Computer Vision/Deep Learning論文千本ノック

今年2月ごろから始めた論文斜め読みが千本を超えたので、リストを掲載。

分野は、物体認識、Deep Learningの軽量化、Neural Architecture Searchがメイン。

適当な掲載方法が見つからず体裁が悪いのだが、とりあえず上げておく。

 

Year Affiliation Title Category Key word Comment Performance Prior Link OSS Related info.
2019 Xiaomi Fair DARTS: Eliminating Unfair Advantages in Differentiable Architecture Search NAS unfair advantage in an exclusive competition zero-one loss dominant operationsの可視化が参考になる P-DARTS が高速高精度 3GPUdays 75.6%@CIFAR-100 P-DARTS https://arxiv.org/pdf/1911.12126.pdf
2019 Carnegie Mellon University DEEP MULTIVARIATE MIXTURE OF GAUSSIANS FOR OBJECT DETECTION UNDER OCCLUSION Object Detection occlusion mAP:62.1/50.9/38.4(occ3段階) soft-NMS, DeepVoting https://arxiv.org/pdf/1911.10614.pdf
2019 Xiamen University, Huawei Multinomial Distribution Learning for Effective Neural Architecture Search NAS MdeNAS, Multinomial Distribution Learning 0.16GPUdays DARTS https://arxiv.org/pdf/1905.07529.pdf https://github.com/tanglang96/MDENAS
2019 Tianjin university Exploiting Operation Importance for Differentiable Neural Architecture Search NAS EoiNAS DARTS拡張、MdeNASの方が優れている 0.6GPUdays MdeNAS https://arxiv.org/pdf/1911.10511.pdf
2019 Bosch Meta-Learning of Neural Architectures for Few-Shot Learning NAS, meta-learning meta loss gradient-based meta-learningとNASを初めて組み合わせた AutoMeta https://arxiv.org/pdf/1911.11090.pdf
2019 Simon Fraser University BA-Net: Dense Bundle Adjustment Network Bundle Adjustment depth parameterization 下記からの引用 end-to-endでBA camera motionとdepthの同時推定 95.21 ms(320 × 240解像度2枚) https://arxiv.org/pdf/1806.04807.pdf
2019 AIST 論文ではないが単眼距離推定のサーベイ https://speakerdeck.com/kanezaki/ji-jie-xue-xi-woyong-ita3ci-yuan-detaren-shi-nituite?slide=61
2019 Chemnitz University of Technology, Southampton Solent University Traffic Signs Recognition and Distance Estimation using a Monocular Camera TSR YOLO+ active learning 学習データの比率は、posi:45%/unsure:35%/nega:20% BBox面積で距離を推定 https://www.researchgate.net/profile/Shadi_Saleh3/publication/337362850_Traffic_Signs_Recognition_and_Distance_Estimation_using_a_Monocular_Camera/links/5dd3f04b299bf11ec8600590/Traffic-Signs-Recognition-and-Distance-Estimation-using-a-Monocular-Camera.pdf
2019 Google Search to Distill: Pearls are Everywhere but not the Eyes Knowledge Distillation Architecture-aware Knowledge Distillation (AKD) RL NASNet https://arxiv.org/pdf/1911.09074.pdf
2019 Huawei, The Hong Kong University of Science and Technology MULTI-OBJECTIVE NEURAL ARCHITECTURE SEARCH VIA PREDICTIVE NETWORK PERFORMANCE OPTIMIZATION NAS graph convolutional network (GCN), Bayesian Optimization random searchに対し+3% DARTSと同等(CIFAR-10) DARTS, ASNG-NAS https://arxiv.org/pdf/1911.09336.pdf
2003 Massachusetts Institute of Technology Contextual Priming for Object Detection Object Detection Context-Driven Focus of Attention 下記からGIST featureの引用 手で設計したattention+saliency map http://people.csail.mit.edu/torralba/IJCVobj.pdf
2018 Indiana University Bloomington Toddler-Inspired Visual Object Learning Object Detection attention, GIST featuresz(extracted GIST features [31] from each object instance and computed pairwise GIST distances (L2 norm) across all instances ) object variabilityをGIST distanceで評価 http://vision.soic.indiana.edu/papers/diversity2018nips.pdf
2019 Detection of Microaneurysms in Fundus Images Based on an Attention Mechanism Object Detection image quality equalization(Otsu+CLAHE) Feature Fusion Based on Attention 前処理でコントラストを上げる score mapとbinary GTの差のloss(attention) AP:0.757 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827155/pdf/genes-10-00817.pdf
2016 Stanford University Image quality object detection accuracy Object Detection 画質低下の影響 http://cs231n.stanford.edu/reports/2016/pdfs/287_Report.pdf
2018 UBTECH Sydney Deep Ordinal Regression Network for Monocular Depth Estimation Monocular Depth Estimation DORN KITTI4位(code公開ではトップ) DeepLabに近い absErrorRel:8.78%(500ms) https://arxiv.org/pdf/1806.02446.pdf https://github.com/hufu6371/DORN
2019 Huawei RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving Object Detection Approximate Foreground Separation (AFgS), Distance-Stratified Sampler (DSS), Supervised Sparsification monocular 3D 教師あり・なしの組合せ AM3D https://arxiv.org/pdf/1911.09712.pdf
2019 DeepMind, Google Fast Sparse ConvNets Acceleration XNNPACK, sparse matrix-dense matrix multiplication (SpMM) Weight sparsityでは高速化しないという誤解を解く動機 1.3 − 2.4×高速化 https://arxiv.org/pdf/1911.09723.pdf
2019 Huawei SM-NAS: Structural-to-Modular Neural Architecture Search for Object Detection NAS, Object Detection Backbone-Neck (fusion)-RPN-Headの構造は変えない Titan-VでCOCO mAP~44.7@50ms2.5 https://arxiv.org/pdf/1911.09929.pdf
2019 Google Research EfficientDet: Scalable and Efficient Object Detection Object Detection EfficientDet, BiFPN 複数レベルを通るパスの追加 Titan-VでCOCO mAP~44.7@50ms https://arxiv.org/pdf/1911.09070.pdf
2019 Beihang University Learning Spatial Fusion for Single-Shot Object Detection Object Detection YOLOv3 + ASFF Pyramid level間のfusion Tesla V100でCOCO mAP43.9%@34ms https://arxiv.org/pdf/1911.09516.pdf https://github.com/ruinmessi/ASFF
2019 Microsoft Label-similarity Curriculum Learning Image Classification Curriculum learning probability distribution over classes as target label 動的にラベルを変える 蒸留で似たことやってる例なかったか? https://arxiv.org/pdf/1911.06902.pdf
2019 University of Illinois at Urbana-Champaign, XMotors.ai NAIS: Neural Architecture and Implementation Search and its Applications in Autonomous Driving NAS DNN/implementation co-design, FPGA-oriented Bundle generation FPGAの動作fpsを制約とする YOLOv3の6倍以上高速 https://arxiv.org/pdf/1911.07446.pdf
2019 Cornell University, Fudan University, Tsinghua University, Facebook AI Research Multi-Scale Dense Networks for Resource Efficient Image Classification Image Classification MSDNet 下記でDynamic inferenceのSOTAとされた論文 DenseNet+3% https://arxiv.org/pdf/1703.09844.pdf
2019 Peking University S2DNAS: Transforming Static CNN Model for Dynamic Inference via Neural Architecture Search NAS dynamic inference(入力に応じて動的に計算グラフを切り替え高速化), Channel-wise チャネル分割の仕方を探索 MSDNetのような階層型分岐構造の探索 57%パラメータ削減で精度-0.7%(MobileNetV2, CIFAR-100) https://arxiv.org/pdf/1911.07033.pdf
2019 Shandong University Lane Recognition Algorithm Using the Hough Transform Based on Complicated Conditions Lane Detection Dark-Light-Dark-threshold ラインの左右両端の微分のminが閾値以上かで判定 直線・障害物/カーブなしでしか評価していない https://www.scirp.org/pdf/jcc_2019111914261439.pdf
2019 Alibaba, Northeastern University DARB: A Density-Adaptive Regular-Block Pruning for Deep Neural Networks Model Compression block-max weight masking (BMWM) irregular pruning Acc.+3%, 1/25圧縮 https://arxiv.org/pdf/1911.08020.pdf
2019 Baidu 2nd Place Solution in Google AI Open Images Object Detection Track 2019 Object Detection Top-k Voting-nms 複数モデルのensemble https://arxiv.org/pdf/1911.07171.pdf
2016 University of Washington XGBoost: A Scalable Tree Boosting System Boosting いわずと知れたXGBoostの元論文 https://arxiv.org/pdf/1603.02754.pdf https://lib-arts.hatenablog.com/entry/tree_based_algo1
2017 Indiana University, Pacific Northwest National Laboratory A Survey of Methods for Collective Communication Optimization and Tuning
2005 Argonne National Laboratory Optimization of Collective Communication Operations in MPICH collective communication algorithms "All reduce", "All gather" and "Reduce scatter" LightGBM公式で’LightGBM implements state-of-art algorithms[9].’として引用されている。 以下Wikipedia引用”MPICH(以前はMPICH2と呼ばれていた)は、自由に利用可能なポータブルなMPI実装である。MPIとは、並列計算で使われる分散メモリアプリケーションのためのメッセージパッシングの標準の一つである。” https://github.com/microsoft/LightGBM/blob/master/docs/Features.rst#references https://www8.cs.umu.se/kurser/5DV050/VT11/F2.pdf
2016 Peking University, Microsoft Research A Communication-Efficient Parallel Algorithm for Decision Tree Parallel Voting Decision Tree (PV-Tree) LightGBM論文の引用 LightGBMのtree構造の工夫を理解するために重要 http://papers.nips.cc/paper/6381-a-communication-efficient-parallel-algorithm-for-decision-tree.pdf
2013 Graduate University of Chinese Academy of Sciences Justifying the importance of color cues in object detection: a case study on pedestrian Object Detection 物体検出におけるLUVの優位性 歩行者検出FPPI評価でベスト https://www.researchgate.net/profile/Lei_Qin6/publication/267721938_Justifying_the_Importance_of_Color_Cues_in_Object_Detection_A_Case_Study_on_Pedestrian/links/549534780cf29b9448211619.pdf
2019 Texas A&M University Fourier Spectrum Discrepancies in Deep Network Generated Images GAN GANの生成画像は高周波成分が過剰に大きい傾向 https://arxiv.org/pdf/1911.06465.pdf
2019 University of California TinyCNN: A Tiny Modular CNN Accelerator for Embedded FPGA 16-bit fixed-point data in a CNN accelerator (FPGA) 3% accuracy loss https://arxiv.org/pdf/1911.06777.pdf
2019 Volvo Automated Augmentation with Reinforcement Learning and GANs for Robust Identification of Traffic Signs using Front Camera Images TSR, DA YOLOv3, bounding box GAN (BBGAN) DAの効果は基本的に小さい模様 昼は効果なく、夜がPrecision向上大きい(precision/recall from 0.70/0.66 to 0.83/0.71 for nighttime images) https://arxiv.org/pdf/1911.06486.pdf
2019 Chinese Academy of Sciences DATA: Differentiable ArchiTecture Approximation NAS Ensemble Gumbel-Softmax (EGS) 1GPUdaysでAmoebaNet-Cなみ https://papers.nips.cc/paper/8374-data-differentiable-architecture-approximation.pdf https://github.com/XinbangZhang/DATA-NAS
2019 Sandia National Laboratories RAPDARTS: Resource-Aware Progressive Differentiable Architecture Search co-attention and co-excitation (CoAE) framework 12GPUdays, DSO-NAS(1GPUdays)と同等精度 https://arxiv.org/pdf/1911.05704.pdf
2019 National Tsing Hua University One-Shot Object Detection with Co-Attention and Co-Excitation https://papers.nips.cc/paper/8540-one-shot-object-detection-with-co-attention-and-co-excitation.pdf https://github.com/timy90022/One-Shot-Object-Detection.
2019 University of Washington Traffic Sign Detection and Recognition for Autonomous Driving in Virtual Simulation Environment TSR RetinaNet https://arxiv.org/pdf/1911.05626.pdf
2019 University of Cambridge Focused Quantization for Sparse CNNs Model Compression Focused compression (5 bits, sparse) x16.3 https://papers.nips.cc/paper/8796-focused-quantization-for-sparse-cnns.pdf https://github.com/deep-fry/mayo
2019 Google Learning from a Teacher using Unlabeled Data Distillation Blind Distillation+Fine-Tune with Labeled Data https://arxiv.org/pdf/1911.05275.pdf
2019 Deep learning model for object detection Unsupervisedでpose/depthを出す https://aip.scitation.org/doi/pdf/10.1063/1.5133483
2019 KAIST SimVODIS: Simultaneous Visual Odometry, Object Detection, and Instance Segmentation VO Simultaneous Visual Odometry, Object Detection, and Instance Segmentation (SimVODIS) utilizes image reconstruction from different camera views as a supervision signal Mask-RCNN+FPN https://arxiv.org/pdf/1911.05939.pdf
2019 UCLA PerspectiveNet: 3D Object Detection from a Single RGB Image via Perspective Points Object Detection 2D Box Branch, Perspective Points Branch, 3D Box Branch SUN RGB-D https://papers.nips.cc/paper/9093-perspectivenet-3d-object-detection-from-a-single-rgb-image-via-perspective-points.pdf
2019 Chinese Academy of Sciences, Megvii DetNAS: Backbone Search for Object Detection NAS FPN and RetinaNet Shuffle Unit random baselineに対し<+1% http://papers.nips.cc/paper/8890-detnas-backbone-search-for-object-detection.pdf https://github.com/megvii-model/DetNAS.
2019 Chongqing University of Posts and Telecommunications A Multibranch Object Detection Method for Traffic Scenes Object Detection SSDより高速高精度 P-R評価 30ms(KITTI) http://downloads.hindawi.com/journals/cin/2019/3679203.pdf
2019 Telkom University Design and implementation of obstacles detection in selfdriving car prototype Object Detection HSV Segmentation The distance formulas are produced by Geogebra Application with power trendline. 面積から距離推定? https://iopscience.iop.org/article/10.1088/1742-6596/1367/1/012020/pdf
2019 University of Waterloo EFFICACY OF PIXEL-LEVEL OOD DETECTION FOR SEMANTIC SEGMENTATION Semantic Segmentation out of distribution (OOD) detection https://arxiv.org/pdf/1911.02897.pdf
2019 Dalian University of Technology SFE-SSD: Shallow Feature Enhancement SSD for Small Object Detection Object Detection SSD, Feature Fusion mAP+1.2%(Conv4 3 deconv + fusion, VOC2007) 85 FPS w/ 1080Ti http://jmre.dlut.edu.cn/en/ch/reader/create_pdf.aspx?file_no=20190616&year_id=2019&quarter_id=6&falg=1
2019 Arizona State University Structural Pruning in Deep Neural Networks: A Small-World Approach Model Compression hierarchically trimming Small-World model intrinsic network propertyに注目 Acc;0.17%, -66%param.(VGG) https://arxiv.org/pdf/1911.04453.pdf
2007 University of Waikato Best-first Decision Tree Learning Light GBMが参照しているleaf-wise growth best-firstと表現している その意味はimpurityの低減の最大化 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.2862&rep=rep1&type=pdf
2019 A PROGRAMMABLE APPROACH TO MODEL COMPRESSION Model Compression https://arxiv.org/pdf/1911.02497.pdf
2019 FRD-CNN: Object detection based on small-scale convolutional neural networks and feature reuse Object Detection fire module mAP+2.2%(VOC2007) MobileNet+SSD https://www.nature.com/articles/s41598-019-52580-0.pdf
2019 Huazhong University of Science and Technology Localization-aware Channel Pruning for Object Detection Model Compression -75%で~2%drop https://arxiv.org/pdf/1911.02237.pdf
2019 Carnegie Mellon University SCL: Towards Accurate Domain Adaptive Object Detection via Gradient Detach Based Stacked Complementary Losses Object Detection stacked complementary losses (SCL) method domain adaptive Domain AdaptationをFaster RCNNに応用し、霧シーン(FoggyCityscapes)の認識率向上 中間層からcontextを抽出するsub-networkを、勾配伝搬を一方通行にするdetach strategyを用いて学習 https://arxiv.org/pdf/1911.02559.pdf https://github.com/harsh-99/SCL
2019 KU Leuven A Systematic Analysis of a Context Aware Deep Learning Architecture for Object Detection Object Detection Contextual heatmap Keras Mask R-CNNベース memory network, Gated Bi-Directional (GBD) units http://ceur-ws.org/Vol-2491/paper90.pdf https://github.com/kbardool/Contextual-Inference-V2
2019 Northern Border University Pedestrian Detection for Advanced Driver Assistance Systems using Deep Learning Algorithms Object Detection The "Fire" module has a squeeze convolution layer YOLO v2+SqueezeNet mAP:75.8%, 32.4fps SSD+SqueezeNet, Mask R-CNN https://www.researchgate.net/profile/Yahia_Said/publication/337050186_Pedestrian_Detection_for_Advanced_Driver_Assistance_Systems_using_Deep_Learning_Algorithms/links/5dc2a0a34585151435ecba04/Pedestrian-Detection-for-Advanced-Driver-Assistance-Systems-using-Deep-Learning-Algorithms.pdf
2017 Microsoft Research Resource-efficient Machine Learning in 2 KB RAM for the Internet of Things Bonsai single, shallow, sparse tree sparsely projecting into a low-dimensional space 下記引用 2kBメモリのDT NeuralNetより高精度 データセットが画像でないので性能がわからない https://www.microsoft.com/en-us/research/uploads/prod/2017/06/kumar17.pdf https://github.com/BonsaiAI https://docs.bons.ai/references/library-reference.html
2019 LG Electronics On-Device Machine Learning: An Algorithms and Learning Theory Perspective edgeでの学習 https://arxiv.org/pdf/1911.00623.pdf
2019 CEA, LIST LapNet : Automatic Balanced Loss and Optimal Assignment for Real-Time Dense Object Detection Object Detection Per-Object Normalized Overlap OSSなし ThunderNetより低速高精度 mAP:38.2(COCO) ~80ms,M2Detに劣る(~55ms;DarkNet-53backboneではmAP37.6でぴったり一致) CenterNetには劣る RetinaNet, FCOS https://arxiv.org/pdf/1911.01149.pdf
2019 Aggregated Residual Dilation-Based Feature Pyramid Network for Object Detection 改善効果は小 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8840842
2019 Shanghai Jiao Tong University Object Guided External Memory Network for Video Object Detection Object Detection selectively store valuable features フレーム間整合性をattention融合/固定で? http://openaccess.thecvf.com/content_ICCV_2019/papers/Deng_Object_Guided_External_Memory_Network_for_Video_Object_Detection_ICCV_2019_paper.pdf
2019 National University of Defense Technology, Megvii Inc. ThunderNet: Towards Real-time Generic Object Detection on Mobile Devices Object Detection Spatial Attention Module とにかく速い YOLOv3と同等 CPU at 32.3 fps mAP:28.1(COCO) Pelee, Tiny-DSOD http://openaccess.thecvf.com/content_ICCV_2019/papers/Qin_ThunderNet_Towards_Real-Time_Generic_Object_Detection_on_Mobile_Devices_ICCV_2019_paper.pdf https://github.com/mohhao/TF-Keras-ThunderNet
2019 University of Engineering and Technology Classification of Degraded Traffic Signs Using Flexible Mixture Model and Transfer Learning TSR 特徴量次元に対しあるところで誤差はサチる この時130ms HOG-LBPでも向上 FC後にDR https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8866733
2019 University of Wisconsin Madison Resource Constrained Neural Network Architecture Search: Will a Submodularity Assumption Help? NAS RCAS, Lazy Cost Effective Greedy algorithm (LCEG) 9GPUdays 2GPUdaysでDARTSと同等精度 DARTSよりTop-1 Accuracy+1.5% MNasNet-92 http://openaccess.thecvf.com/content_ICCV_2019/papers/Xiong_Resource_Constrained_Neural_Network_Architecture_Search_Will_a_Submodularity_Assumption_ICCV_2019_paper.pdf
2019 South China University of Technology, Tencent NAT: Neural Architecture Transformer for Accurate and Compact Architectures NAS Markov decision process (MDP), graph convolution network (GCN), policy gradient あまりに微々たる改善 https://arxiv.org/pdf/1910.14488.pdf
2018 Texas A&M University Improved Techniques for Learning to Dehaze and Beyond: A Collective Study Object Detection deghazeの効果はたいしてないという結論 https://arxiv.org/pdf/1807.00202.pdf
2019 Shenzhen University Does deep learning always outperform simple linear regression in optical imaging? Compressed sensing Linear Regression プロジェクタ+1画素センサで実験、DLを上回る https://arxiv.org/ftp/arxiv/papers/1911/1911.00353.pdf
2019 Huawei Auto-FPN Automatic Network Architecture Adaptation for Object Detection Beyond Classification NAS, Object detection Resource constraints 4~16GPUdays SSD-ResNet101と大差なし(mAP:31.8(+0.6%)) SSD http://openaccess.thecvf.com/content_ICCV_2019/papers/Xu_Auto-FPN_Automatic_Network_Architecture_Adaptation_for_Object_Detection_Beyond_Classification_ICCV_2019_paper.pdf
2019 Toshiba SCALABLE DEEP NEURAL NETWORKS VIA LOWRANK MATRIX FACTORIZATION Model Compression complexity-based criterion SVD low-rank network 学習後にmodel sizeを変更する model size変更時はBNのパラメータを修正すべき CIFAR100で50%までは精度低下なし slimmable networks https://arxiv.org/pdf/1910.13141.pdf
2019 Tsinghua University, Northeastern University, … Adversarial Robustness vs. Model Compression, or Both? Model Compression Concurrent Adversarial Training Adv attackにロバストにするとcapacityが増える課題に対しpruning pruningはirregular/regularに分かれる http://openaccess.thecvf.com/content_ICCV_2019/papers/Ye_Adversarial_Robustness_vs._Model_Compression_or_Both_ICCV_2019_paper.pdf https://github.com/yeshaokai/ Robustness-Aware-Pruning-ADMM
2019 Intel AI Lab Neural Network Distiller: A Python Package For DNN Compression Research Model Compression PyTorchで軽量化を開発するPython OSS Compressionの代表技術のまとめとしても有用 https://arxiv.org/pdf/1910.12232.pdf https://github.com/NervanaSystems/distiller
2019 Shadow Detection and Removal for Traffic Surveillance System Shadow removal HSV Shadow Detection Condition =F_V < avg_V && F_V > avg_V/2 && F_S < max_S/3 2枚入力 https://s3.amazonaws.com/academia.edu.documents/60491667/284_Shadow_Detection_and_Removal_for_Traffic_Surveillance_System20190904-12736-lv1cw3.pdf?response-content-disposition=inline%3B%20filename%3DShadow_Detection_and_Removal_for_Traffic.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20191104%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20191104T064921Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=f9449cb541d876855e03bc4983f47c9bf1f3c7aeb5c540336ad3bebb86e6a123
2019 Shadow Detection and Removal Techniques: A Perspective View Shadow removal https://s3.amazonaws.com/academia.edu.documents/59927707/334_Shadow_Detection_and_Removal_Techniques_A_Perspective_View20190704-66578-h7fu65.pdf?response-content-disposition=inline%3B%20filename%3DShadow_Detection_and_Removal_Techniques.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20191104%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20191104T064930Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=f54d721b15883e220960b2680da14ebd162012f92a55e7aa86efe220b5f89452
2019 LMU Munich Tunability: Importance of Hyperparameters of Machine Learning Algorithms HPO tunability, XGBoost, AUC, accuracy and Brier score http://www.jmlr.org/papers/volume20/18-444/18-444.pdf
2009 Multi-class AdaBoost Boosting SAMME forward stagewise additive modeling algorithm that minimizes a novel exponential loss AdaboostのSAMME sklearnのensemble/_weight_boosting.py/_compute_proba_from_decisionに実装 http://ww.web.stanford.edu/~hastie/Papers/SII-2-3-A8-Zhu.pdf https://web.stanford.edu/~hastie/Papers/samme.pdf
2019 RealityEngines.AI, CMU BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search NAS Neural BayesOpt DARTSと変わらず、より遅い https://arxiv.org/pdf/1910.11858.pdf
2019 Korea University Reverse and Boundary Attention Network for Road Segmentation road free space 影・輝度飽和に頑健 端部の精度向上 F1:96.30% 160ms(KITTI) http://openaccess.thecvf.com/content_ICCVW_2019/papers/CVRSUAD/Sun_Reverse_and_Boundary_Attention_Network_for_Road_Segmentation_ICCVW_2019_paper.pdf
2019 Google An Annotation Saved is an Annotation Earned: Using Fully Synthetic Training for Object Detection Object Detection 3D background model, synthetic training data 3D CAD Model+3D Pose Curriculum Curriculum strategy significantly outperforms random pose selection 照明方向/照明色/noise/blurを変化させてrendering 追試困難 実写とぴったり同じ精度(Faster R-CNN) http://openaccess.thecvf.com/content_ICCVW_2019/papers/R6D/Hinterstoisser_An_Annotation_Saved_is_an_Annotation_Earned_Using_Fully_Synthetic_ICCVW_2019_paper.pdf
2019 Imperial College London Efficient Structured Pruning and Architecture Searching for Group Convolution Model Compression GConv pruning Pointwise/Permutation-based channel permutations layerwise heuristic pruning 73.77%,err+5.4%(CIFAR100) CondenseNet http://openaccess.thecvf.com/content_ICCVW_2019/papers/NeurArch/Zhao_Efficient_Structured_Pruning_and_Architecture_Searching_for_Group_Convolution_ICCVW_2019_paper.pdf https://github.com/kumasento/gconv-prune
2019 Hana Institute of Technology Efficient Decoupled Neural Architecture Search by Structure and Operation Sampling NAS EDNAS DARTSと同精度 3.6GPUdays DSO-NAS https://arxiv.org/pdf/1910.10397.pdf
2015 京都大学 今日からできるスパースモデリング http://www-adsys.sys.i.kyoto-u.ac.jp/mohzeki/Presentation/lecturenote20150901.pdf
2019 Sharif University of Technology, INRIA A Comparative Study of Neural Network Compression Model Compression Optimal Brain Damage https://arxiv.org/pdf/1910.11144.pdf
2019 Skolkovo Institute of Science and Technology Automated Multi-Stage Compression of Neural Networks Model Compression Low-rank tensor approximations, MUSCO 1.39×, mAP+2.0(FASTER R-CNN) http://openaccess.thecvf.com/content_ICCVW_2019/papers/LPCV/Gusak_Automated_Multi-Stage_Compression_of_Neural_Networks_ICCVW_2019_paper.pdf
2012 Katholieke Universiteit Leuven Pedestrian detection at 100 frames per second Object Detection ACF論文でcascadeの手法として引用 VeryFast Soft cascade GPU https://rodrigob.github.io/documents/2012_cvpr_pedestrian_detection_at_100_frames_per_second.pdf
2017 University of California, Davis, Google Research GPU-acceleration for Large-scale Tree Boosting Boosting LightGBM We replace the ConstructHistogram function in LightGBM with our GPU implementation GTX1080で2~4x高速化(building feature histograms) https://arxiv.org/pdf/1706.08359.pdf
2019 Zhejiang University, Singapore Management University, Alibaba-Zhejiang Universit CSID: Center, Scale, Identity and Density-aware Pedestrian Detection in a Crowd Object Detection Identity and Density Map (ID-Map) ID-NMS anchor-free pedestrian detectionのNMSの改良 160ms, missrate:5.8~46.6(CityPersons, 1080Ti) https://arxiv.org/pdf/1910.09188.pdf
2019 The University of Adelaide FCOS: Fully Convolutional One-Stage Object Detection Object Detection centerness 下記からの引用 anchor-free lossにcenterness(eq.3)を加えるのがポイント NMSは使う RetinaNet https://arxiv.org/pdf/1904.01355.pdf
2019 Tohoku University Analysis and a Solution of Momentarily Missed Detection for Anchor-based Object Detectors Object Detection soft thresholding SSD, M2Det 東北大岡谷先生 課題:SSD/M2Detにおいて、フレームによって未検出になる 原因:物体の移動に対し、隣接する2つのanchor(default) boxの両方のスコアが下がるため未検出が発生する。従来の学習方法は、positive/negative sampleの判定が binary thresholding のためにIoUの変化に過敏であった。言い換えると、物体のScaling/Shifting/Aspect変化(anchor box境界近傍の変化)に対するロバスト性を考慮していなかった。 対策:IoU閾値近傍の物体に連続値のスコアを与えるsoft-thresholding(Fig.7参照)を適用した学習データ生成を行い、隣接2boxのスコアが同時に下がる現象を緩和。 https://arxiv.org/pdf/1910.09212.pdf
2019 MIT, Cisco NASIB: Neural Architecture Search withIn Budget NAS augmenting the search space of ENAS Policy based Sampling from Search Space 探索範囲12倍 探索効率がENASの4倍? 1.5GPUdays https://arxiv.org/pdf/1910.08665.pdf
2019 Beijing Institute of Technology, Intel SPCDet: Enhancing Object Detection with Combined Feature Fusing Object Detection Serial-parallel Combined Fusing, feature pyramid, Context fusing 38.0ms@512x512 RefineDet512 http://proceedings.mlr.press/v101/wang19e/wang19e.pdf
2019 FZI Research Center for Information Technology Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information Object Detection Disparity Image+Semantic Map, Grid Map KITTI https://www.mrt.kit.edu/z/publ/download/2019/Koenigshof2019Objects.pdf
2019 Astyx GmbH Deep Learning Based 3D Object Detection for Automotive Radar and Camera Object Detection 下記引用 https://www.astyx.com/fileadmin/redakteur/dokumente/Deep_Learning_Based_3D_Object_Detection_for_Automotive_Radar_and_Camera.PDF
2019 Astyx GmbH Automotive Radar Dataset for Deep Learning Based 3D Object Detection Object Detection Semi-Automatic Labeling via Active Learning radar dataset 公開はされていない https://www.astyx.com/fileadmin/redakteur/dokumente/Automotive_Radar_Dataset_for_Deep_learning_Based_3D_Object_Detection.PDF
2018 UC Berkeley,Adobe Toward Multimodal Image-to-Image Translation GAN BicycleGAN LPIPS Distance 下記からの引用 LPIP Distanceで画像多様性定量化 “image distance measure diversity”で検索してトップに来る https://arxiv.org/pdf/1711.11586.pdf https://github.com/junyanz/BicycleGAN
2018 UC Berkeley, OpenAI, Adobe The Unreasonable Effectiveness of Deep Features as a Perceptual Metric LPIPS image diversityの定量化 下記からの引用 https://arxiv.org/pdf/1801.03924.pdf https://www.github.com/richzhang/PerceptualSimilarity.
2019 Universidad Aut´onoma de Barcelona Controlling biases and diversity in diverse image-to-image translation average the LPIPS distance between 19 random pairs of outputs for 100 different input images https://arxiv.org/pdf/1907.09754.pdf
2015 A boosted multi-task model for pedestrian detection with occlusion handling Multi-Task ACF Model, three decision stumps ACFのocclusion対策 occlusion levelの異なるDTの組み合わせ miss rate:35.81~82.37 (heavy以外はtop) https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/download/9879/9825
2006 Inria Coloring Local Feature Extraction 下記からの引用 SIFTのcolor版 https://lear.inrialpes.fr/people/vandeweijer/papers/eccv2006.pdf
2012 Color Attributes for Object Detection Object Detection ColorRobust hue descriptor (HUE) descriptors, Opponent derivative descriptor (OPP), Color names (CN), late fusion 色特徴量/ACF拡張参考、color/shapeのfusionはlateの方がいい http://cat.uab.es/~joost/papers/cvpr2012.pdf
2018 Huazhong University of Science and Technology Pedestrian-Synthesis-GAN: Generating Pedestrian Data in Real Scene and Beyond Data Augmentation PS-GAN, Pix2Pix 下記からの引用 https://arxiv.org/pdf/1804.02047.pdf
2019 University of Michigan, Google Cloud AI Generative Modeling for Small-Data Object Detection Object Detection generative modeling, Pedestrian Detection 少数データからの学習 https://arxiv.org/pdf/1910.07169.pdf
2019 Shandong University A Small Traffic Sign Detection Algorithm Based on Modified SSD TSR SSD300 mAP:0.85(CCTSDB dataset) https://iopscience.iop.org/article/10.1088/1757-899X/646/1/012006/pdf
2011 NICTA Large Scale Sign Detection using HOG Feature Variants TSR Single Bin HOG Feature HOGの変形 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.727.207&rep=rep1&type=pdf
2016 Graz University of Technology Grid Loss: Detecting Occluded Faces Object Detection https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/opitz_eccv_16.pdf
2019 Benem´erita Universidad Aut´onoma de Puebla Speed Bump Detection on Roads using Artificial Vision road stereo bump検出 https://www.polibits.cidetec.ipn.mx/2019_148_9/Speed%20Bump%20Detection%20on%20Roads%20using%20Artificial%20Vision.pdf
2019 Baidu, University of Technology Sydney One-Shot Neural Architecture Search via Self-Evaluated Template Network NAS SETN Gradient 特筆すべき性能ではない 1.8GPU days GDAS https://arxiv.org/pdf/1910.05733.pdf
2019 University of Waterloo State of Compact Architecture Search For Deep Neural Networks Model Compression Generative Synthesis [9] 8 https://arxiv.org/pdf/1910.06466.pdf
2019 Tianjin University Mask-Guided Attention Network for Occluded Pedestrian Detection Object Detection Mask-Guided Attention VGG16+RoIAlign+MGA+FC CityPersons [31] and Caltech [7]. CityPersons [31] is a challenging dataset FPPI評価 Bi-Box https://arxiv.org/pdf/1910.06160.pdf
2019 Valeo, Cairo University, IRI BarcelonaTech FuseMODNet: Real-Time Camera and LiDAR based Moving Object Detection for robust low-light Autonomous Driving Object Detection Moving Object Detection FlowNet RGB + rgbFlow + lidarFlow DARK-KITTIデータセットを構築(MOD用) 18fps mIOU:75.3(KITTI) https://arxiv.org/pdf/1910.05395.pdf https://sites.google.com/view/fusemodnet
2019 Academia Sinica IMMVP: An Efficient Daytime and Nighttime On-Road Object Detector Object Detection ResNet-18 Backbone Cascade R-CNN subnet BDD100K mAP:0.460(IoU @ 0.5) 57MB, 510ms, 56 GOPs, 11M params 24.3 FPS@FHD https://arxiv.org/pdf/1910.06573.pdf
2019 University of California, Berkeley Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism Object Detection endpoint box regression module(epBRM) 点群にBox Regression AVOD, F-PointNet, PointPillars - https://arxiv.org/pdf/1910.04853.pdf
2019 University of Rochester Learning Sparsity and Quantization Jointly and Automatically for Neural Network Compression via Constrained Optimization Model Compression Support pruning Support quantization End-to-end optimization 4.41%dropで26.7× (ImageNet) 0%dropで836×(CIFAR10,ResNet-50) CLIP-Q https://arxiv.org/pdf/1910.05897.pdf
2019 Latent AI Bit Efficient Quantization for Deep Neural Networks Model Compression MobileNet-SSD 7-bitまでは精度が落ちない lossなしに52%減 https://arxiv.org/ftp/arxiv/papers/1910/1910.04877.pdf
2017 Mahidol University International College, IBM Research AI Low-Latency Sliding-Window Aggregation in Worst-Case Constant Time Aggregation (e.g., computing the sum or geometric mean) 下記引用 http://hirzels.com/martin/papers/debs17-daba.pdf
2018 Mahidol University International College, IBM Research AI Sliding-Window Aggregation Algorithms http://hirzels.com/martin/papers/encyc18-sliding-window.pdf
2013 The University of Electro-Communications An Efficient and Scalable Implementation of Sliding-Window Aggregate Operator on FPGA https://core.ac.uk/download/pdf/147692472.pdf
2019 IBM Research Benchmarking and Optimization of Gradient Boosting Decision Tree Algorithms Boosting XGBoost, LightGBM and Catboost Hyper-Parameter Optimization, Bayesian Optimization, GPyOpt https://arxiv.org/pdf/1809.04559.pdf
2019 KU Leuve Fast Gradient Boosting Decision Trees with Bit-Level Data Structures Boosting Gradient boosting decision tree BitBoost does not (yet) support multi-class classification 精度を維持した学習の高速化 2クラスのみ speed up model construction 2 to 10 times https://ecmlpkdd2019.org/downloads/paper/557.pdf https://github.com/laudv/bitboost
2011 Brno University of Technology Acceleration of Object Detection using Classifiers Object Detection user defined cost function, WaldBoost https://pdfs.semanticscholar.org/091e/02bd7f6bc827b581b3b0c90a34b93b35ee0b.pdf
2016 Universitat Autonoma de Barcelona GPU-based pedestrian detection for autonomous driving Object Detection 歩行者検出 HOG+LBPで単品よりもmissrate-10% GPUでx8高速化 https://www.sciencedirect.com/science/article/pii/S1877050916309395
2017 An Up-to-Date Comparison of State-of-the-Art Classification Algorithms Image Classification 分類のサーベイ 速度ではGBDT(XG-Boost)がベスト https://www.researchgate.net/publication/315955430_An_Up-to-Date_Comparison_of_State-of-the-Art_Classification_Algorithms
2019 Wuhan University Context-Aware Convolutional Neural Network for Object Detection in VHR Remote Sensing Imagery Object Detection VGG4,5 blockからcontext抽出 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8846087
2019 Johannes Kepler University Linz Patch Refinement - Localized 3D Object Detection Object Detection LiDAR only, BEV https://arxiv.org/pdf/1910.04093.pdf
2013 Restoring An Image Taken Through a Window Covered with Dirt or Rain Dirt Detection CNN, patch-level network 汚れ検知&修復 real-timeは今後の課題 BM3D http://openaccess.thecvf.com/content_iccv_2013/papers/Eigen_Restoring_an_Image_2013_ICCV_paper.pdf
2011 Lens Shading Correction for Dirt Detection Dirt Detection HE, Morphological Operation, B-spline https://www.csie.ntu.edu.tw/~fuh/personal/LensShadingCorrectionforDirtDetection.pdf
2014 Detection of Camera Artifacts from Camera Images Dirt Detection thresholded NCC map 100 NCC maps accumulated フレーム間NCC https://www.honda-ri.de/pubs/pdf/1000.pdf
2016 Dirt Detection on Camera Module Using Stripe-Wise Background Modeling Dirt Detection https://www.researchgate.net/profile/Bin_Liao/publication/311008159_Dirt_Detection_on_Camera_Module_Using_Stripe-Wise_Background_Modeling/links/5a5d287e458515c03ede81da/Dirt-Detection-on-Camera-Module-Using-Stripe-Wise-Background-Modeling.pdf
2019 Georgia Institute of Technology Challenging Environments for Traffic Sign Detection: Reliability Assessment under Inclement Conditions TSR 画像劣化耐性評価 a precision of 0.55 and a recall of 0.32, F0.5 score of 0.48 and F2 score of 0.35 https://arxiv.org/pdf/1902.06857.pdf https://github.com/olivesgatech/CURE-TSD
2019 Yandex, Moscow Institute of Physics and Technology CatBoost: unbiased boosting with categorical features CatBoost Pythonパッケージあり Light GBMより高精度 Light GBMと同じ速度 Light GBM https://arxiv.org/pdf/1706.09516.pdf https://github.com/catboost/catboost https://catboost.ai/docs/concepts/python-installation.html
2013 York University 50 Years of Object Recognition: Directions Forward Object Detection https://www.researchgate.net/publication/257484936_50_Years_of_object_recognition_Directions_forward
2019 PLA Army Engineering University, Real-Time Object Detection in Remote Sensing Images Based on Visual Perception and Memory Reasoning Object Detection self-attention pre-screening リモセン固有でBBoxの角度も出す Recall:98.82, 14.03ms DSSOD, As-Net http://scholar.google.co.jp/scholar_url?url=https://www.mdpi.com/2079-9292/8/10/1151/pdf&hl=ja&sa=X&d=16238942437737322476&scisig=AAGBfm1YySSzv19FCHvlCPQJYTUBNv2OVQ&nossl=1&oi=scholaralrt&hist=5RIGpeIAAAAJ:13208294427371959306:AAGBfm3UqH6LPjfgfMRfQL8OPgtOHOZJ9A
2009 Silesian University of Technology Error Analysis of Stereo Calibration and Reconstruction Camera Calibration SVD-based stereovision algorithms 6以上の対応点座標の行列MをSVD 視差が小さいと誤差が拡大 誤差敏感度と再構成誤差は必ずしも対応しない https://www.researchgate.net/publication/221055026_Error_Analysis_of_Stereo_Calibration_and_Reconstruction
2016 Grid Loss: Detecting Occluded Faces Object Detection grid loss CNNのocclusion対策 https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/opitz_eccv_16.pdf
2018 United International University MEBoost: Mixing Estimators with Boosting for Imbalanced Data Classification Object Detection RUSBoost https://arxiv.org/pdf/1712.06658.pdf
2017 Japan Automobile Research Institute Edge filter for road white-line detection using brightness gradient approximation by discrete values Lane Detection brightness-gradient approximation non-linear filter that approximates a low-pass filter plus differential calculus 遅いし、FP-FNトレードオフが解決できているわけでもない 西日でF-measure0.739 https://www.jstage.jst.go.jp/article/jamdsm/11/2/11_2017jamdsm0029/_pdf/-char/ja
2018 Indiana University–Purdue University Indianapolis Road Edge Detection in All Weather and Illumination via Driving Video Mining Lane Detection ML天候分類 https://www.researchgate.net/publication/329980954_Road_Edge_Detection_in_All_Weather_and_Illumination_via_Driving_Video_Mining
2007 University of Missouri, POSTECH Coherent Line Drawing Line Detection http://umsl.edu/mathcs/about/People/Faculty/HenryKang/coon.pdf
2005 Optical Flow: Techniques and Applications https://www.dgp.toronto.edu/~donovan/stabilization/opticalflow.pdf
2012 Idiap Research Institute Exact Acceleration of Linear Object Detectors Object Detection Patchworks マルチスケール画像を1枚にタイリングしFourier変換で効率的処理 FFTW+Eigen Discriminatively Trained Deformable Part Models HOGの時間が主要になった x6.4>高速化と精度向上 https://publications.idiap.ch/downloads/papers/2012/Dubout_ECCV_2012.pdf http://www.idiap.ch/scientific-research/resources.
2017 Nanyang Technological University Fast and Accurate Pedestrian Detection using Dual-Stage Group Cost-Sensitive RealBoost with Vector Form Filters Object Detection 1)Feature Approximation 2)selective classification 3)selective scale processing Dual-Stage Group Cost-sensitive RealBoost scale of support Filtered Channel Features (FCF) framework+vector form filters ”the detection process only on alternate scales of the pyramid”具体的な記述なし negative samples with complex backgroundに注目 1)coarse to fineで分類 2)ACFの補完は精度低下することを指摘。検出用のスケールを限定する方針。 ACFの後継が、LDCF[27], InformedHaar [40], Checkerboards [42] and RotatedFilters[41] cost-insensitive(AdaBoost)の後にcost-sensitive boostingを行う2段階 処理時間ACFの3倍、miss rate-15.14% https://chengjuzhou.bitbucket.io/paper/ACMMM2017/ACMMM2017.pdf
2014 Universidade Federal de Minas Gerais An Optimized Sliding Window Approach to Pedestrian Detection Object Detection Sliding Windows Random Filtering regressionで位置合わせ 1.4% of detection windows is enough to detect 83% of the pedestrians on the INRIA dataset http://www.ssig.dcc.ufmg.br/wp-content/uploads/2014/09/2014-An-Optimized-Sliding-Window-Approach-to-Pedestrian-Detection.pdf
2015 Chinese Academy of Sciences Convolutional Channel Features Object Detection Power law ACFの代替としてCNN+boosting CCFに10 HOG+LUVを追加して改善 画像ピラミッド高速化のために、Patchwork(1チャネル化、FCありCNNにのみ恩恵、1.5 ∼ 3 times speed up) ACFの近傍レベルのfeatureをscaleする方法を転用 ACFに対しMiss Rate -9.44%(Caltech pedestrian benchmark [14]) 1.5 ∼ 3 times speed up add 16 pixel padding ACF, LDCF https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yang_Convolutional_Channel_Features_ICCV_2015_paper.pdf https://bitbucket.org/binyangderek/ccf/src/master/
2019 Brown University, Sensetime IMPROVING ONE-SHOT NAS BY SUPPRESSING THE POSTERIOR FADING NAS Posterior Convergent NAS (PC-NAS) weight sharing oneshot NAS のposterior fading problemへの対策 (true/proxy parameter posteriorの距離がsupergraphのモデル数に従い増大) MobileNetV2に対しtop-1 +2.1% ResNet50/101の中間の性能をどっちよりも軽く(latency 3/4) ProxylessNAS-gpu, EfficientNet-B0 https://arxiv.org/pdf/1910.02543.pdf
2019 Duke University Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions Interpretability autoencoder 下記からの引用 中間表現の分類器を作る? Fashion-MNIST https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17082/16552
2019 UT Austin Splitting Steepest Descent for Growing Neural Architectures Training technique Progressive Training 下記著者 https://arxiv.org/pdf/1910.02366.pdf
2019 EPFL Overcoming Multi-model Forgetting NAS Weight Plasticity Loss (WPL) weight-sharingの課題 複数モデルで共有する重みが、一方の学習の更新で損なわれる ENASに組み合わせた NAO https://arxiv.org/pdf/1902.08232.pdf
2019 UT Austin, Facebook ENERGY-AWARE NEURAL ARCHITECTURE OPTIMIZATION WITH FAST SPLITTING STEEPEST DESCENT NAS continuous splitting process Splitting one neuron into two off-springs Rayleigh-Quotient Gradient Descent speed up the splitting process of Liu et al. (2019b) weight-sharingの課題:multi-model forgetting problem 演算コストのloss追加 PyTorch実装 MobilenetV2に対しtop-1 +1.1%, 同程度MAC (ImageNet) AMC https://arxiv.org/pdf/1910.03103.pdf https://github.com/dilinwang820/fast-energy-aware-splitting
2019 The State Key Laboratory of Novel Software Technology Soware Engineering Practice in the Development of Deep Learning Applications 技術者へのインタビュー 設計フェーズでの性能評価・構造設計が課題 66%がTF使ってる バグ探しは、ツール・コードレビュー・ログ・ブレークポイント・敵対的サンプル quality of data(QoD) が重視されてきている https://arxiv.org/pdf/1910.03156.pdf
2019 University of Chicago Band-limited Training and Inference for Convolutional Neural Networks Model Compression band-limited training can effectively control the resource usage 下記からの引用 ノイズ耐性を上げて軽量化 Fourier係数の一定数を削除 精度は必ず低下 http://proceedings.mlr.press/v97/dziedzic19a/dziedzic19a.pdf
2019 University of California, Oregon State University BENCHMARKING NEURAL NETWORK ROBUSTNESS TO COMMON CORRUPTIONS AND PERTURBATIONS Data Augmentation Gaussian data augmentation and adversarial training Our IMAGENET-C dataset consists of 15 types of algorithmically generated corruptions 下記からの引用 バンドパスフィルタ https://arxiv.org/pdf/1903.12261.pdf
2019 Google, UC Berkeley A Fourier Perspective on Model Robustness in Computer Vision Training technique Gaussian data augmentation, adversarial training DAの限界は特定の劣化種別に特化してしまうこと Gaussian data augmentation, adversarial trainingともにハイパスの劣化には強いが、ローパスの劣化には弱いことを検証 このトレードオフに対するAutoAugmentの有効性を確かめた Fourier解析をした点が新しい Fourier heat map:精度の各周波数敏感度 AutoAugment https://arxiv.org/pdf/1906.08988.pdf
2019 Volvo, Halmstad University Deep Neural Network Compression for Image Classification and Object Detection Object Detection network agnostic model compression dynamical clustering approach YOLOv3, FasterRCNN pruning→quantizationの2段階 pruned about 95%, 110× less memory(CIFAR10) YOLOは60%で精度も下がってるのでダメ https://arxiv.org/pdf/1910.02747.pdf https://github.com/AhrazA/modelcompression-2019
2019 University of Canterbury xYOLO: A Model For Real-Time Object Detection In Humanoid Soccer On Low-End Hardware Object Detection Tiny YOLOより10~100倍高速、1/40サイズ https://arxiv.org/pdf/1910.03159.pdf
2019 UC Berkeley, Microsoft Research Asia DEFORMABLE KERNELS: ADAPTING EFFECTIVE RECEPTIVE FIELDS FOR OBJECT DEFORMATION Deformable Kernels, effective receptive field (ERF) experts of Conditional Convolutions have better correlation with object semantics than their scales 可視化の点でも有用(T-SNE, support) deformable conv.の発展形 global(GAP)+local(conv) Conditional Convolutions https://arxiv.org/pdf/1910.02940.pdf
2019 Google AutoAugment: Learning Augmentation Strategies from Data Data Augmentation AutoAugment ShearX/Y, TranslateX/Y, Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize, Contrast, Color, Brightness, Sharpness, Cutout [12], Sample Pairing [24] Proximal Policy Optimization (PPO) [53]を適用したが、GAやrandom searchでさらに改善するかもという記載。 PILで実装 RLで最適なDAを探す NAS論文と同じcontrollerとchildが登場 Cutout http://openaccess.thecvf.com/content_CVPR_2019/papers/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.pdf https://github.com/tensorflow/models/tree/master/research/autoaugment.
2017 Microsoft, Peking University LightGBM: A Highly Efficient Gradient Boosting Decision Tree Image Classification LightGBM https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
2019 ONE-SHOT NEURAL ARCHITECTURE SEARCH VIA COMPRESSIVE SENSING NAS Fourier analysis of Boolean functions AutoAugmentを適用 DARTSのDAGと同じ, architecture encode randomly sampled sub-graph edgesのみBPで更新 構造をvalidation performanceに変換する関数を 0.25GPU days DARTS https://openreview.net/pdf?id=B1lsXREYvr
2017 Integer Occupancy Grids : a probabilistic multi-sensor fusion framework for embedded perception OGM OGMが基礎から詳しい https://tel.archives-ouvertes.fr/tel-01680375/document
2019 Federal University of Parana (UFPR) ANDA: A Novel Data Augmentation Technique Applied to Salient Object Detection Data Augmentation 物体の背景を入れ替えるDA https://arxiv.org/pdf/1910.01256.pdf
2019 Universidade Federal do Espírito Santo Bio-Inspired Foveated Technique for Augmented-Range Vehicle Detection Using Deep Neural Networks Object Detection path planに基づきROI設定 https://arxiv.org/ftp/arxiv/papers/1910/1910.00944.pdf
2019 University of Michigan LiTE: Light-field Transparency Estimation for Refractive Object Localization pose estimation, Angular Filter, 3D EPI Filters, Unreal Engine 4 https://arxiv.org/pdf/1910.00721.pdf
2019 Carnegie Mellon University Towards Unifying Neural Architecture Space Exploration and Generalization NAS, Model Compression NN-Mass, Network Science-based NAS, Generalization 構造から汎化性能を予測するための理論的基礎 lottery ticket hypothesisは構造を視野に入れていないことを指摘 https://arxiv.org/pdf/1910.00780.pdf
2019 University of Waterloo YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object Detection Object Detection Residual Projection-Expansion-Projection Macroarchitecture Fully-connected Attention Macroarchitecture モデルサイズは1/15だが、演算量が40%減でしかない。 Tiny YOLOに対する精度向上が大きい ∼26.9 FPS and ∼48.2 FPS (At 15W and 30W power budgets, Jetson AGX Xavier) 4.57Bops https://arxiv.org/pdf/1910.01271.pdf
2019 Tsinghua University Global Sparse Momentum SGD for Pruning Very Deep Neural Networks Model Compression lottery tickets, momentum-SGD-based optimization on-the-fly pruning learning-based pruning x5 Compress Ratio https://arxiv.org/pdf/1909.12778.pdf
2019 Model Pruning Enables Efficient Federated Learning on Edge Devices Model Compression Raspberry Pi Sample Basedで精度低下がなだらか(でも下がるので興味ない) https://arxiv.org/pdf/1909.12326.pdf
2019 Bosch Automated design of error-resilient and hardware-efficient deep neural networks NAS error resilience at the algorithm level Hardware-focused neural architecture design LEMONADE GTSRB https://arxiv.org/pdf/1909.13844.pdf
2019 Google RandAugment: Practical data augmentation with no separate search Data Augmentation RandAugment Python code 簡単に精度上げられそうで注目 COCOでmAP+1.3 https://arxiv.org/pdf/1909.13719.pdf
2019 Recognition of Various Objects from a Certain Categorical Set in Real Time Using Deep Convolutional Neural Networks Object Detection SSD, Raspberry Pi 3b board http://ysip3.computational-logic.org/proceedings/paper_5.pdf
2019 Google Brain, Baidu EPNAS: Efficient Progressive Neural Architecture Search - Supplementary Materials NAS Resource constraints https://bmvc2019.org/wp-content/uploads/papers/0456-supplementary.pdf
2019 Huawei STACNAS: TOWARDS STABLE AND CONSISTENT OPTIMIZATION FOR DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH NAS CIFAR10で1GPUdays https://arxiv.org/pdf/1909.11926.pdf
2019 Data augmentation with Symbolic-to-Real Image Translation GANs for Traffic Sign Recognition TSR Pix2pix GANによるDA Contrastによる従来DAが最高精度(不思議) Blur, Brightness, Contrast, Displacement, Occlusion, Rotation, and Scalingがベースライン https://arxiv.org/pdf/1907.12902v1.pdf
2019 ROAD DETECTION USING TRAFFIC SIGN INFORMATION 特許、標識位置を手掛かりに路面推定 https://patentimages.storage.googleapis.com/1e/ff/61/2fe93e2280f957/US20190272435A1.pdf
2017 University of South Carolina Detecting Small Signs from Large Images TSR SSD+VGG-16 SmallObject-Sensitive-CNN (SOS-CNN) 遅いらしい(employed a sliding window strategy, it is time consuming) Hierarchical Deep Architectureではベスト (acc:90%) https://arxiv.org/pdf/1706.08574.pdf
(Github) TLR SSD with Mobilenet v1 38 ms, mAP:0.60 Hierarchical Deep Architecture https://github.com/bosch-ros-pkg/bstld/blob/master/tf_object_detection/configs/ssd_mobilenet_v1.config
2019 Yunnan University Traffic Sign Recognition by Combining Global and Local Features Based on Semi-supervised Classification TSR CNN, SVM+Multiple feature fusion P-R系の評価指標, CH+EF+HOGの融合 分類のみみたい labeled dataの割合を振って評価 https://www.researchgate.net/profile/Yun_Yang58/publication/336114360_Traffic_Sign_Recognition_by_Combining_Global_and_Local_Features_Based_on_Semi-supervised_Classification/links/5d8ecc56a6fdcc2554a10bf8/Traffic-Sign-Recognition-by-Combining-Global-and-Local-Features-Based-on-Semi-supervised-Classification.pdf
2019 NVIDIA REAL - TIME DETECTION OF LANES AND BOUNDARIES BY AUTONOMOUS VEHICLES Lane Detection 特許、CNN、binary/multi-classセグメンテーション+曲線フィッティング、ROI分割とDown Samplingの前処理組合せ https://patentimages.storage.googleapis.com/48/10/c2/0598aac7501408/US20190266418A1.pdf
2019 NATIONAL CHIAO TUNG UNIVERSITY LANE LINE DETECTION METHOD Lane Detection 特許、輝度から天候判断して適応的閾値2値化 https://patentimages.storage.googleapis.com/15/80/2a/b2bdca577a1afb/US20190279003A1.pdf
2018 PLA Army Engineering University, Multi-Object Detection in Traffic Scenes Based on Improved SSD Object Detection SSD改良
2019 Toward Convolutional Blind Denoising of Real Photographs NR CBDNet http://openaccess.thecvf.com/content_CVPR_2019/papers/Guo_Toward_Convolutional_Blind_Denoising_of_Real_Photographs_CVPR_2019_paper.pdf
2019 Megvii Learning Raw Image Denoising with Bayer Pattern Unification and Bayer Preserving Augmentation NR https://arxiv.org/pdf/1904.12945.pdf https://github.com/Jiaming-Liu/BayerUnifyAug.
2019 UIUC 2 Oxford 3 Megvii (Face++) 4Stony Brook 5 IBM When AWGN-based Denoiser Meets Real Noises NR real noiseをブラックボックスとして扱う https://arxiv.org/pdf/1904.03485.pdf
2007 Tampere University of Technology Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data NR 輝度依存ノイズモデルの先駆 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.1943&rep=rep1&type=pdf
2019 Overview and empirical analysis of ISP parameter tuning for visual perception in Autonomous Driving HOG+LBP+LSVM, IOU ISPの認識への影響という点では参考になる と思いきや、CLAHEで特徴点マッチングが減るとかどうでもいい内容 https://www.researchgate.net/publication/334537057_Overview_and_empirical_analysis_of_ISP_parameter_tuning_for_visual_perception_in_Autonomous_Driving
2019 University of Michigan Shadow Transfer: Single Image Relighting For Urban Road Scenes Relighting cast shadowもrelightingできるが性能がへぼい https://arxiv.org/pdf/1909.10363.pdf
2019 Tsinghua University Traffic Sign Detection based on SSD TSR SSD 有料 precision and recall on the test data set are 91.09%, and 88.06% https://dl.acm.org/citation.cfm?id=3351988
2017 Tribhuvan University A Novel Approach to Traffic Sign Localization and Recognition Based on Single Shot Multibox Detector TSR SSD (ZFNet) mAP:0.81 MSERs https://pdfs.semanticscholar.org/590a/bd947003d26f547c022182f7dca13b0353af.pdf
2018 Qualcomm Simultaneous Traffic Sign Detection and Boundary Estimation using Convolutional Neural Network TSR Vertex regression, Faster RCNN and SSD mAP:75.4, 4.3FPS, 0.39GMAC(SqueezeNet) https://arxiv.org/pdf/1802.10019.pdf
2019 University of Freiburg, Bosch UNDERSTANDING AND ROBUSTIFYING DIFFERENTIABLE ARCHITECTURE SEARCH NAS DARTS ADA, premature convergence in the weights’ space DARTS https://arxiv.org/pdf/1909.09656.pdf
2019 University of Science and Technology of China, JD AI Research Scheduled Differentiable Architecture Search for Visual Recognition NAS Visual Recognition, Schedule DAS (SDAS), v 0.25GPUdays SENet-3D https://arxiv.org/pdf/1909.10236.pdf
2019 University of Science and Technology of China, Microsoft Research Asia Understanding and Improving One-shot Neural Architecture Optimization NAS NAO-V2 1GPUdays NAO-WS, ProxylessNAS https://arxiv.org/pdf/1909.10815.pdf
2019 Karlsruhe Institute of Technology (KIT) FAIRnets Search - A Prototype Search Service to Find Neural Networks NAS RDF and OWL http://ceur-ws.org/Vol-2451/paper-19.pdf http://km.aifb.kit.edu/services/fairnets/.
2019 Megvii, Tsinghua University, Xi’an Jiaotong University Double Anchor R-CNN for Human Detection in a Crowd Object Detection Joint NMS(頭部・胴体分ける), human in a crowd miss rates (MR) of 51.79pp https://arxiv.org/pdf/1909.09998.pdf
2019 University of Chinese Academy of Sciences A System-Level Solution for Low-Power Object Detection Object Detection MobileNet mAP of 66.4 verified on the PASCAL VOC 2012, 202.76GOPs(Xilinx Zynq UltraScale+ MPSoC) https://arxiv.org/pdf/1909.10964.pdf
2019 Improving CNN-based Planar Object Detection with Geometric Prior Knowledge Object Detection YOLO or MASK RCNN 斜めの平面物体 D情報でRGBを平行化 https://arxiv.org/pdf/1909.10245.pdf
2019 City University of Hong Kong CNN-based RGB-D Salient Object Detection: Learn, Select and Fuse Object Detection Hierarchical Cross-modal Distillation RGBをTeacherに、DをStudentに入力。 各層でFusion https://arxiv.org/pdf/1909.09309.pdf
2019 University of Illinois at Urbana-Champaign, Inspirit IoT, Inc, IBM Research SKYNET: A HARDWARE-EFFICIENT METHOD FOR OBJECT DETECTION AND TRACKING ON EMBEDDED SYSTEMS Object Detection, Model Compression Har56th IEEE/ACM Design Automation Conference (DAC-SDC), dware-Aware Neural Network Search NAS 67.33 frames per second (FPS) on a TX2 https://arxiv.org/pdf/1909.09709.pdf
2019 University of Maryland College Park, CCDC Army Research Laboratory WASSERSTEIN DISTANCE BASED DOMAIN ADAPTATION FOR OBJECT DETECTION Object Detection unsupervised domain adaptation 霧、Global Features/gradient reversal layer (GRL)に対しDiscriminator https://arxiv.org/pdf/1909.08675.pdf
2013 車載カメラを用いた自転車検出システムの研究 HOGとCoHOGの速度比較、さらに倍速 https://core.ac.uk/download/pdf/147425919.pdf
2014 The University of Tokyo Extended Co-occurrence HOG with Dense Trajectories for Fine-grained Activity Recognition ECoHOG http://www.hirokatsukataoka.net/pdf/sice14_kataoka_ecohoganalysis.pdf http://www.hirokatsukataoka.net/pdf/accv14_kataoka_finegrainedactivityrecognition.pdf
2014 Hanyang University Outdoor Place Recognition in Urban Environments using Straight Lines Canny, MSLD OpenCVのcv::ximgproc::FastLineDetector http://cvlab.hanyang.ac.kr/~jwlim/files/icra14linerec.pdf
2013 Ritsumeikan University Data Transfer Matters for GPU Computing hardware-assisted direct memory access GPU高速化参考 http://www.ertl.jp/~shinpei/papers/icpads13.pdf
2017 Kyushu Institute of Technology Evaluation of Hardware Oriented MRCoHOG using Logic Simulation Pedestrian MRCoHOG https://pdfs.semanticscholar.org/7501/3eb524b894ff965db53c1a5ad44523baf53f.pdf
2019 Google Research EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks NAS Compound Model Scaling 下記引用 推論は速くなったが学習時間は不明 depth,width,resolutionの積に制約 ACC*FLOPS^-0.07をobjective 84.4% top-1 / 97.1% top-5 accuracy on ImageNet, 8.4x smaller and 6.1x faster https://arxiv.org/pdf/1905.11946.pdf https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
2019 University of Tsukuba & RIKEN AIP,Yokohama National University Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search NAS ASNG-NAS 日経ロボティクスで取り上げられていた 0.11GPUdays http://proceedings.mlr.press/v97/akimoto19a/akimoto19a.pdf https://www.skillupai.com/blog/NNpaper/
2019 Duke University DASNet: Dynamic Activation Sparsity for Neural Network Efficiency Improvement Model Compression winners-take-all (WTA) dropout +0.26%@15.9%MAC(ResNet-50) https://arxiv.org/pdf/1909.06964.pdf
2019 University of Toronto Monocular 3d object detection leveraging accurate proposals and shape reconstruction Object Detection 下記引用 MultiFusion http://openaccess.thecvf.com/content_CVPR_2019/papers/Ku_Monocular_3D_Object_Detection_Leveraging_Accurate_Proposals_and_Shape_Reconstruction_CVPR_2019_paper.pdf
2019 The University of Adelaide, Bytedance AI Lab Task-Aware Monocular Depth Estimation for 3D Object Detection Depth, Object Detection Depth評価指標が参考になる(absRel, SILog etc.) MonoPSR https://arxiv.org/pdf/1909.07701.pdf
2019 Alibaba Line as object: datasets and framework for semantic line segment detection Lane Detection hourglass104 0. MS COCO mAPでKAIST SLS datasetsを評価 評価方法が詳しく参考になる IoUの代替としてACL(8) mAP:0.7353, 36fps( GTX 1080Ti) https://arxiv.org/pdf/1909.06591.pdf
2019 Skoltech, Samsung Recognition of Russian traffic signs in winter conditions. Solutions of the “Ice Vision” competition winners TSR Cascade R-CNN 悪天候下のコンペ 標識の空間分布、やはり上半分にしかない 標識は反転すると正しくないので、finetuneではflip DAをOFFる https://arxiv.org/pdf/1909.07311.pdf https://github.com/icevision/solutions
2019 Technion, Intel Thanks for Nothing: Predicting Zero-Valued Activations with Lightweight Convolutional Neural Networks Model Compression zero activation predictor (ZAP) MAC reduction:23.1%~ https://arxiv.org/pdf/1909.07636.pdf
2019 Chubu University Attention Branch Network: Learning of Attention Mechanism for Visual Explanation Attention branch 下記引用,直観に整合したattention mapが得られている Average of accuracy:91.07 https://arxiv.org/pdf/1812.10025.pdf
2019 TAIST, 東工大 New Perspective of Interpretability of Deep Neural Networks Interpretability human predictability(easiness for the human to predict the change of the inference when perturbing the model), Human-in-the-loop (HITL), Channel Pruning Average of accuracy:90.72 Attention Branch Network (ABN) https://arxiv.org/pdf/1909.07156.pdf
2019 Huawei,Tsinghua University DARTS+: Improved Differentiable Architecture Search with Early Stopping NAS DRATS, early stopping paradigm DARTSのskip-connectが多発する問題(Collapse Issue)を解決 0.2GPUdays(DARTSのx20) 2.32% test error on CIFAR10, 14.87% on CIFAR100, and 23.7% on ImageNet XNAS https://arxiv.org/pdf/1909.06035.pdf
2019 JD AI Research Customizable Architecture Search for Semantic Segmentation NAS, Semantic Segmentation Multi-Scale Cell Search 下記引用,速度は最高、Normal/Reduction直列、パラメータ数制御 http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_Customizable_Architecture_Search_for_Semantic_Segmentation_CVPR_2019_paper.pdf
2019 SenseTime Research, Zhejiang University Graph-guided Architecture Search for Real-time Semantic Segmentation NAS, Semantic Segmentation graph convolution network (GCN) mIOU:71.9, 142fps(CamVid, 720x960) CAS https://arxiv.org/pdf/1909.06793.pdf
2019 MOBILEYE SYSTEMS AND METHODS FOR CURB DETECTION AND PEDESTRIAN HAZARD ASSESSMENT 縁石認識 warp functionによる段差推定 高さ既知? https://patentimages.storage.googleapis.com/d1/f1/93/b1d16dd174067f/US20190251375A1.pdf
2019 TOYOTA TRAFFIC SIGNAL RECOGNITION DEVICE TLR mapを使った信号機認識の特許 http://scholar.google.co.jp/scholar_url?url=https://patentimages.storage.googleapis.com/00/53/57/0dce5a8ae16c91/US20190244041A1.pdf&hl=ja&sa=X&d=12831132657367409302&scisig=AAGBfm1pbt2GeUesHehWbL4nIarnsJkHKA&nossl=1&oi=scholaralrt&hist=5RIGpeIAAAAJ:13950008414835878474:AAGBfm2SZXPONllfi4fVPoFhzTloxU35Gg
2019 The Hong Kong University of Science and Technology Multi-Sensor 3D Object Box Refinement for Autonomous Driving Object Detection 3D, Frustum PC, stereo/3D box alignment LiDAR/StereoとのFusion Pseudo-3D https://arxiv.org/pdf/1909.04942.pdf
2019 Norwegian University of Science and Technology Automated Detecting and Placing Road Objects from Street-level Images Object Detection attributed topological binary tree (ATBT) PSPNetがDeepLabv3+を、YOLOがFasterを上回る https://arxiv.org/ftp/arxiv/papers/1909/1909.05621.pdf
2019 Peking University, Huawei CARS: Continuous Evolution for Efficient Neural Architecture Search NAS evolution, Parameter Warmup, pNSGA-III 0.4GPU days, AmoebaNEt並み精度 https://arxiv.org/pdf/1909.04977.pdf
2016 Robust Uncalibrated Stereo Rectification with Constrained Geometric Distortions (USR-CGD) Rectification 異焦点, 変換後の4つの矩形の幾何的定量指標をlossに加えた最適化(non-convex) カメラ中心の移動を許容する平行化により画像のゆがみを抑えつつ異焦点に対応する https://arxiv.org/pdf/1603.09462.pdf http://mcl.usc.edu/mcl-ss-database/
2017 Karlsruhe Institute of Technology Online Stereo Camera Calibration From Scratch Camera Calibration Motion Estimation あいにくgithubは空っぽ、同焦点距離 再投影誤差ベースで動き推定 アルゴ詳細が書いてない https://www.mrt.kit.edu/z/publ/download/2017/rehder_iv17.pdf https://github.com/KIT-MRT.
2007 U n iv e rs ity o f N o rth C aro lin a Real-time plane-sweeping stereo with multiple sweeping directions Depth plane-sweeping, GPU 20fps https://inf.ethz.ch/personal/pomarc/pubs/GallupCVPR07.pdf
2015 Dalian University of Technology Improved camera calibration method based on perpendicularity compensation for binocular stereo vision measurement system Camera Calibration accuracy:99.91% https://www.osapublishing.org/DirectPDFAccess/40850022-B308-C206-F9337F0A1F6DD36B_319955/oe-23-12-15205.pdf?da=1&id=319955&seq=0&mobile=no
2014 ETH Real-Time Direct Dense Matching on Fisheye Images Using Plane-Sweeping Stereo Stereo ZNCC, sub-pixel interpolation Plane-Sweepingによる魚眼のステレオ 平行化でない理由は、マルチカメラへの拡張、GPUによる実時間処理 https://www.researchgate.net/profile/Lionel_Heng/publication/282927545_Real-Time_Direct_Dense_Matching_on_Fisheye_Images_Using_Plane-Sweeping_Stereo/links/5628be5b08ae22b1702ed18e.pdf
1999 Microsoft Research Computing Rectifying Homographies for Stereo Vision Camera Calibration Epipolar Geometry, Rectification, Shearing Transform fundamental matrixをHomographyの外積に、Homography行列をprojective/shearing/similarityの積に分解 Homographyは平行化画像の座標に変換する行列 http://dev.ipol.im/~morel/Dossier_MVA_2011_Cours_Transparents_Documents/2011_Cours7_Document2_Loop-Zhang-CVPR1999.pdf
2002 Middlebury College, Microsoft Research A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms Stereo http://vision.middlebury.edu/stereo/taxonomy-IJCV.pdf
2012 Raytrix GmbH Single Lens 3D-Camera with Extended Depth-of-Field Depth plenopticの理論が詳しい https://www.researchgate.net/profile/Christian_Perwass/publication/258713151_Single_Lens_3D-Camera_with_Extended_Depth-of-Field/links/575e978b08aec91374b3d90a.pdf
2019 Peking University, Johns Hopkins University TDAPNet: Prototype Network with Recurrent Top-Down Attention for Robust Object Classification under Partial Occlusion Image Classification attention mapを作って上流にフィードバック https://arxiv.org/pdf/1909.03879.pdf
1998 University of Parma GOLD: A Parallel Real-Time Stereo Vision System for Generic Obstacle and Lane Detection Lane Detection STEREO INVERSE PERSPECTIVE MAPPING (u,v)⇔(x,y)の解析的表現 輝度画像の1画素飛ばしの微分 StereoのPolar histogramsの波形で障害検知 http://www.ce.unipr.it/people/bertozzi/publications/cr/ieee.ip.gold.pdf
2019 NVIDIA VACL: Variance-Aware Cross-Layer Regularization for Pruning Deep Residual Networks Model Compression ~79.5%prune https://arxiv.org/pdf/1909.04485.pdf
2019 University of Oxford Geometry-Aware Video Object Detection for Static Cameras Object Detection Geometry Inputからattentionを作る https://arxiv.org/pdf/1909.03140.pdf
2010 Distance determination for an automobile environment using Inverse Perspective Mapping in OpenCV Depth IPM 下記からの引用 実質簡易単眼測距(y座標)と同じ https://www.researchgate.net/publication/224195999_Distance_determination_for_an_automobile_environment_using_Inverse_Perspective_Mapping_in_OpenCV
2019 New York University Learning Object-Specific Distance From a Monocular Image Depth Distance/Keypoint Regressor 単眼測距,KITTIの距離頻度参考 16.2ms, RMSE:6.87m(KITTI), 10.511(nuScenes) https://arxiv.org/pdf/1909.04182.pdf
2019 Traffic Sign Detection and Classification around the World TSR 世界の標識を集めたデータセット構築 https://arxiv.org/pdf/1909.04422.pdf https://www.mapillary.com/dataset/trafficsign
2017 Daimler, University of Freiburg Sparsity Invariant CNNs depth completion sparse inputs 全層にマスクの積を含むSparse Convolutionを行う LiDARのsparseな点群から密なデプスマップを作るのが目的 http://www.cvlibs.net/publications/Uhrig2017THREEDV.pdf
2017 Facebook AI Research, University of Oxford 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks Semantic Segmentation Sparse Convolution operate on spatially-sparse input data スパースな入力に対応 https://arxiv.org/pdf/1711.10275.pdf https://github.com/facebookresearch/SparseConvNet
2019 Stanford 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks Object Detection Point Cloud http://openaccess.thecvf.com/content_CVPR_2019/papers/Choy_4D_Spatio-Temporal_ConvNets_Minkowski_Convolutional_Neural_Networks_CVPR_2019_paper.pdf https://github.com/StanfordVL/MinkowskiEngine
2019 Google Brain Weight Agnostic Neural Networks NAS topology search algorithm (NEAT), multi-objective optimization. パラメータはランダムなまま(学習しない)で, ネットワーク構造(接続)を進化させる https://arxiv.org/pdf/1906.04358.pdf https://weightagnostic.github.io/ https://ai.googleblog.com/2019/08/exploring-weight-agnostic-neural.html http://cympfh.cc/paper/weightanogstic.html https://www.slideshare.net/DeepLearningJP2016/dlweight-agnostic-neural-networks
2019 Facebook AI Research Exploring Randomly Wired Neural Networks for Image Recognition NAS 一定ルールの中では乱数で設計した方が高性能という結果 https://arxiv.org/pdf/1904.01569.pdf
2019 Xiaomi MoGA: Searching Beyond MobileNetV3 NAS MobileNetV3を速度・精度両面で上回る https://arxiv.org/pdf/1908.01314.pdf https://github.com/xiaomi-automl/MoGA
2012 University of Patras Random-Walker Monocular Road Detection in Adverse Conditions Using Automated Spatiotemporal Seed Selection Free Space Detection c1c2c3 color space, Random Walker Algorithm (RWA) shadowに強いOFのための色変換 https://www.researchgate.net/publication/233752622_Random-Walker_Monocular_Road_Detection_in_Adverse_Conditions_Using_Automated_Spatiotemporal_Seed_Selection
2018 VNU University of Engineering and Technology Real-time Lane Marker Detection Using Template Matching with RGB-D Camera Lane Detection half-binary format, template matching 50ms(Jetson TX2) 独自データでTP53% https://arxiv.org/pdf/1806.01621.pdf
2018 University of Bristol Real-Time Stereo Vision-Based Lane Detection System Lane Detection RANSAC, LSF, V-disparity map, dynamic programming road surface detection https://arxiv.org/pdf/1807.02752.pdf
2018 Lane Detection Based on Inverse Perspective Transformation and Kalman Filter Lane Detection IPM, Kalman Filter DoG?前処理 IPMは台形か http://itiis.org/digital-library/manuscript/file/1921/TIIS+Vol+12,+No+2-6.pdf
2019 KU Leuven End-to-end Lane Detection through Differentiable Least-Squares F Lane Detection ERFNet 高速の評価 オクルージョンに強い https://arxiv.org/pdf/1902.00293.pdf https://github.com/wvangansbeke/LaneDetection_End2End
2019 University of Chinese Academy of Sciences, SenseTime Efficient Neural Architecture Transformation Search in Channel-Level for Object Detection NAS neural architecture transformation search(NATS) Channel-wise Selection & Concat Object Detectionで最多・最高解像度の学習データ(COCO, 118k, 800x1200) 20GPU days +0.5% https://arxiv.org/pdf/1909.02293.pdf
2019 University of Chinese Academy of Sciences, SenseTime POD: Practical Object Detection with Scale-Sensitive Network Object Detection scale variance 100ms, 38.5%@COCO AP Cascade R-CNN, CornerNet https://arxiv.org/pdf/1909.02225.pdf
2019 Chinese Academy of Sciences Rethinking the Number of Channels for Convolutional Neural Networks NAS Widening a Convolutional Layer, Evolutionary Algorithm +0.5% on CIFAR-10 and a∼2.33% on CIFAR-100 https://arxiv.org/pdf/1909.01861.pdf
2019 University of California What Happens on the Edge, Stays on the Edge: Toward Compressive Deep Learning Compressive sensing エッジでやる動機は、privacy,security,通信コスト ROIを重点的にサンプリング https://arxiv.org/pdf/1909.01539.pdf
2010 Cranfield University Automatic real-time road marking recognition using a feature driven approach Road Marking Recognition IPM, complexity rejection, orientation normalisation, Shape isolation(backtracking approach [17]) Canny+Houghで消失点推定 VPの位置からyaw,pitch推定→point to point IPM MLPで分類 orientation normalisationをPython実装した http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.227.8116&rep=rep1&type=pdf
2011 University of Chile Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes Harris 3D http://personales.dcc.uchile.cl/~isipiran/papers/SB11b.pdf
2006 YAMAHA MONOCULAR-MOTION-STEREO DISTANCE ESTIMATION METHOD, AND MONOCULAR-MOTION-STEREO DISTANCE ESTIMATION APPARATUS Motion Stereo 特許 (10)式:OFとカメラの並進量から推定 https://patentimages.storage.googleapis.com/45/4d/48/72017c52acecc4/EP3009789A1.pdf
2019 Universitas Prima Indonesia Traffic sign detection using histogram of oriented gradients and max margin object detection TSR HOG, SVM, Max Margin Object Detection (MMOD) https://iopscience.iop.org/article/10.1088/1742-6596/1230/1/012098/pdf
2004 Implementation of Inverse Perspective Mapping Algorithm for the Development of an Automatic Lane Tracking System IPM 下記引用 有料
2016 Dongguk University Recognition of Damaged Arrow-Road Markings by Visible Light Camera Sensor Based on Convolutional Neural Network Road Marking Recognition CNN
2007 Inria Deeper understanding of the homography decomposition for vision-based control Camera Calibration homography decomposition https://hal.inria.fr/inria-00174036/PDF/RR-6303.pdf
2016 University of Applied Sciences Upper Austria Zhang’s Camera Calibration Algorithm: In-Depth Tutorial and Implementation Camera Calibration Zhangの方法の完全な理解 http://staff.fh-hagenberg.at/burger/publications/reports/2016Calibration/Burger-CameraCalibration-20160516.pdf
2005 International Institute of Information Technology A Survey of Planar Homography Estimation Techniques Camera Calibration two views, Planar homography, epipolar geometry, DLT H=K’Rinv(K) 点・線・円弧のマッチング http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.321&rep=rep1&type=pdf
2018 A novel solution in the simultaneous deep optimization of RGB-D camera calibration parameters using metaheuristic algorithms Camera Calibration Kinect v1,v2 https://dergipark.org.tr/tr/download/article-file/728926
2001 Just Research Smarter Presentations: Exploiting Homography in Camera-Projector Systems Camera Calibration プロジェクタのdist補正 https://www.cs.cmu.edu/~rahuls/pub/iccv2001-rahuls.pdf
2019 Michigan State University, AInnovation HM-NAS: Efficient Neural Architecture Search via Hierarchical Masking NAS gradient-based 0.45~1.4GPU days DARTS https://arxiv.org/pdf/1909.00122.pdf
2019 Huawei MANAS: Multi-Agent Neural Architecture Search NAS multi-agent problem memory requirements (1/8th of state-of-the-art 0.8~4GPU days DARTS https://arxiv.org/pdf/1909.01051.pdf
2019 ETH EBPC: Extended Bit-Plane Compression for Deep Neural Network Inference and Training Accelerators Acceleration TABLE I. COMPARISON OF FEATURE MAP SIZES AND PARAMETER COUNT OF MODERN DNNS が有用 average compression ratio of 4× on VGG-16 (+67%), 2.2× on MobileNetV2 (+30%) https://arxiv.org/pdf/1908.11645.pdf
2019 Valeo FisheyeMODNet: Moving Object detection on Surround-view Cameras for Autonomous Driving Object Detection fisheye surround-view s 2フレーム入力して動体マスクを出力 15fps(1 Megapixel images) https://arxiv.org/pdf/1908.11789.pdf
2019 Nanjing University of Posts and Telecommunications Feature Fusion and Adversary Occlusion Networks for Object Detection Object Detection FFAN Adversary Occlusion Network small objects対策 FasterがDSしていくのに対し、後段のdeconvを付加しUNet的構造にする 効果が微妙 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8821288
2019 Middle East Technical University (METU) Imbalance Problems in Object Detection: A Review Object Detection Scale/Objective/Class/Spatial imbalance Imbalanceに特化したサーベイ https://arxiv.org/pdf/1909.00169.pdf
2019 Object detection from a few LIDAR scanning planes Object Detection Fourier descriptor 3層CNN+FC KITTI dataset; B - Budapest dataset [7] Precision:75% https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8818349
2005 Xi'an Jiaotong University Comparison and choice of models in tracking target with coordinated turn motion Tracking UKF 下記で出てきたAugmented Coordinated Turn ACTはKFの遷移行列を(4)で与える https://www.researchgate.net/publication/4221183_Comparison_and_choice_of_models_in_tracking_target_with_coordinated_turn_motion
2019 University of the Bundeswehr Munich Combining Deep Learning and Model-Based Methods for Robust Real-Time Semantic Landmark Detection Object Detection LiDAR, Segmented Point Clouds, Greedy Dirichlet Process Filter (GDPF) of [16], the Augmented Coordinated Turn [38] Landmarkということで注目 しかし対象はTree,Bush RGB + LiDAR 92ms(GTX 1060) ComplexYOLO [32] and Voxelnet https://arxiv.org/pdf/1909.00733.pdf
2019 Jiangsu University Construction and Simulation of Rear-end Conflicts Recognition Model Based on Improved TTC Algorithm TTC time to collision in the work zone (WTTC) WTTCの提案 https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8818033
2008 SANYO Precise Top View Image Generation IPM リアカメラのキャリブの簡易化? http://www.cc.kyoto-su.ac.jp/~kano/pdf/paper/2008%20IEICE%20Top%20View.pdf
2018 Shanghai University of Engineering Science Lane Detection Based on Connection of Various Feature Extraction Methods Lane Detection Canny, EKF, polar Hough http://downloads.hindawi.com/journals/am/2018/8320207.pdf
2019 Shandong University of Science and Technology, Research on Lane a Compensation Method Based on Multi-Sensor Fusion Lane Detection GPS,CAN,IMUとのFusion ラインを3次で表現 https://www.researchgate.net/publication/332177262_Research_on_Lane_a_Compensation_Method_Based_on_Multi-Sensor_Fusion
2014 University of California San Diego On Performance Evaluation Metrics for Lane Estimation Lane Detection ライン定量評価のLPDの出典 ELASで適用 http://cvrr.ucsd.edu/publications/2014/SatzodaTrivedi_ICPR2014.pdf
2019 The Chinese University of Hong Kong, SenseTime Learning Lightweight Lane Detection CNNs by Self Attention Distillation Lane Detection Activation-based attention distillation LDのSOTA インターンで追試 ENet, ERFNet, SCNN https://arxiv.org/pdf/1908.00821v1.pdf https://github.com/cardwing/Codes-for-Lane-Detection https://paperswithcode.com/paper/learning-lightweight-lane-detection-cnns-by
2019 Chongqing University FFBNET : LIGHTWEIGHT BACKBONE FOR OBJECT DETECTION BASED FEATURE FUSION BLOCK Object Detection SSD+VGGとコンパラ 73.54 mAP at speed of 185 FPS(Pascal VOC) MobileNet-SSD https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8803683 https://github.com/fanbinqi/FFBNet.
2017 Rice University Learning to Invert: Signal Recovery via Deep Convolutional Networks Compressed sensing DLで復元 従来より数百倍高速 画像を見るとDAMPの方が全然きれい 圧縮率はより上げられる 入力をFC(ΦTをかける操作に相当)で画像の次元に戻すのがポイント 3 layer CNN, 11x11 kernel 先行例[11]に倣い画像をブロック分割 DAMP https://arxiv.org/pdf/1701.03891.pdf
2017 Nvidia Research, Simon Fraser University Polarimetric Multi-View Stereo Polarimetric imaging 3種類の反射:(un)polarized diffuse reflection, polarized specular reflection specularは位相がπ/2ずれる MVSと組み合わせ形状推定 重要な発見として、無偏光照明に対しては、specular/diffuseの比率によらず、偏光角に対し正弦波となる https://research.nvidia.com/sites/default/files/pubs/2017-07_Polarimetric-Multi-view-Stereo/PolarStereo.pdf
2012 USC Institute for Creative Technologies Estimating Surface Normals from Spherical Stokes Reflectance Fields Shape from polarisation 下記からの引用 http://ict.usc.edu/pubs/Estimating%20Surface%20Normals%20from%20Spherical%20Stokes%20Reflectance%20Fields.pdf
2017 Polarization imaging reflectometry in the wild Polarimetric imaging Transmitted Radiance Sinusoid (TRS), Reflectance extraction, per-pixel index of refraction 0◦, 45◦and 90◦のデータにSVDで正弦波フィッティング specular refectance推定で不定性解消のためカラーチャートの黒縁を使う http://www.ilya.o-x-t.com/publications/polarization-reflectometry-accepted-small.pdf
2019 Depth from a polarisation + RGB stereo pair Stereo ステレオの一方を偏光にすることで微細凹凸を取得 http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhu_Depth_From_a_Polarisation__RGB_Stereo_Pair_CVPR_2019_paper.pdf
2018 University of York Height-from-Polarisation with Unknown Lighting or Albedo Shape from polarisation Degree of polarisation orthographic(正投影)の制約 https://www-users.cs.york.ac.uk/wsmith/papers/SmRaTo18_final.pdf
1982 Correlation Between Albedo and Polarization Characteristics of the Moon - Application of Digital Image Processing http://adsabs.harvard.edu/full/1982SvA....26..345K
2019 Wuhan University Infrared and visible image fusion methods and applications: A survey Image fusion
2015 KAIST Multispectral Pedestrian Detection: Benchmark Dataset and Baseline Object Detection 人は長波長9.3µmを放射 FLIR-A35(Spectral Range 7.5 – 13 µm) http://openaccess.thecvf.com/content_cvpr_2015/papers/Hwang_Multispectral_Pedestrian_Detection_2015_CVPR_paper.pdf http://rcv.kaist.ac.kr/multispectral-pedestrian
2019 Megvii Technology, Tsinghua University Learning Raw Image Denoising with Bayer Pattern Unification and Bayer Preserving Augmentation Noise reduction https://arxiv.org/pdf/1904.12945.pdf https://github.com/Jiaming-Liu/BayerUnifyAug
2015 University of Toronto, Qualcomm High Resolution Photography with an RGB-Infrared Camera Demosaicing RGB-IRのCFAで画像復元 pixel multiplexing, channel crosstalk and chromatic aberrationsの3つの課題に対処 https://www.cs.toronto.edu/~kyros/pubs/15.iccp.rgbi.pdf
2017 The Chinese University of Hong Kong, SenseTime Spatial As Deep: Spatial CNN for Traffic Scene Understanding Lane Detection SCNN 中間層でH/V方向に分割するのが特徴 白線がなくても線を引く 133ms, F1:71 https://arxiv.org/pdf/1712.06080.pdf
2019 Agnostic Lane Detection Lane Detection ENet 13.4ms, F1:68.8 https://arxiv.org/pdf/1905.03704.pdf
2018 General Motors 3D-LaneNet: end-to-end 3D multiple lane detection Lane Detection intra-network inverse-perspective mapping, anchor-based lane representation 勾配も同時推定 Error near(0-30m) (cm):10.8, Error far(30-80m) (cm):30 (tuSimple) https://arxiv.org/pdf/1811.10203v1.pdf#page=1
2018 Cranfield University Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision Lane Detection LDのサーベイとして有用 http://www.ieee-jas.org/fileZDHXBEN/journal/article/zdhxbywb/2018/3/PDF/jas-5-3-645.pdf
Toyota Image Processing Technology for Rear View Camera (1) : Development of Lane Detection System extended Hough Houghの高速化の参考、LUT重みづけ https://www.tytlabs.com/english/review/rev382epdf/e382_031takahashi.pdf
2019 Research on Lane a Compensation Method Based on Multi-Sensor Fusion Lane Detection
2019 Tsinghua University, SenseTime, DrivingStereo: A Large-Scale Dataset for Stereo Matching in Autonomous Driving Scenarios Depth over 180k images, KITTIの100倍以上 http://openaccess.thecvf.com/content_CVPR_2019/papers/Yang_DrivingStereo_A_Large-Scale_Dataset_for_Stereo_Matching_in_Autonomous_Driving_CVPR_2019_paper.pdf https://drivingstereo-dataset.github.io
2019 Self-Attention Generative Adversarial Networks GAN Self-Attention Generative Adversarial Network (SAGAN), long-range dependency modeling, two timescale update rule (TTUR), spectral normalization 下記からの引用 Frechet Inception distance from 27.62 to 18.65 https://arxiv.org/pdf/1805.08318.pdf https://github.com/brain-research/self-attention-gan
2019 Tel Aviv University Single Image Depth Estimation Trained via Depth from Defocus Cues Depth Depth From Defocus, Circle-Of-Confusion, PSF Convolutional layer http://openaccess.thecvf.com/content_CVPR_2019/papers/Gur_Single_Image_Depth_Estimation_Trained_via_Depth_From_Defocus_Cues_CVPR_2019_paper.pdf
2016 Kwangwoon University A parallel camera image signal processor for SIMD architecture ISP ISP 現像ISPへのSIMD応用 https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-016-0137-2
2018 EAVISE, KU Leuven GPU Accelerated ACF Detector Object Detection YOLOと同速度で低精度 ~x3.8 https://pdfs.semanticscholar.org/4ec4/392246a7760d189cd6ea48a81664cd2fe4bf.pdf
2019 KAIST Camera Exposure Control for Robust Robot Vision with Noise-Aware Image Quality Assessment Auto-Exposure Nelder-Mead (NM) method ノイズを推定するので実質NR gradient,entropy,ノイズレベルの和であるIQMを最小化する 撮ってパラメータ調整してを反復するみたい https://arxiv.org/pdf/1907.12646.pdf
2018 University of Michigan, Baidu Modeling Camera Effects to Improve Visual Learning from Synthetic Data Data Augmentation CGを学習に使うためのカメラ劣化モデル Virtual KITTI/GTAで評価 http://openaccess.thecvf.com/content_ECCVW_2018/papers/11129/Carlson_Modeling_Camera_Effects_to_Improve_Visual_Learning_from_Synthetic_Data_ECCVW_2018_paper.pdf
2018 KAIST Fast and Efficient Image Quality Enhancement via Desubpixel Convolutional Neural Networks Super Resolution FEQE, Perceptual index DPED http://openaccess.thecvf.com/content_ECCVW_2018/papers/11133/Vu_Fast_and_Efficient_Image_Quality_Enhancement_via_Desubpixel_Convolutional_Neural_ECCVW_2018_paper.pdf https://github.com/thangvubk/FEQE.git
2016 Arizona State University Understanding How Image Quality Affects Deep Neural Networks Image classification 劣化のバリエーションが多様 https://arxiv.org/pdf/1604.04004.pdf
2018 Fujitsu Laboratories Ltd.,Johns Hopkins University Pushing the Limits of Unconstrained Face Detection: a Challenge Dataset and Baseline Results Face Recognition 劣化のバリエーションが多様 P-R評価のみ https://arxiv.org/pdf/1804.10275.pdf https://ufdd.info/
2016 TUBITAK BILGEM How Image Degradations Affect Deep CNN-based Face Recognition? Face Recognition GoogLeNet 劣化のバリエーションが多様 ノイズ・ブラーの敏感度が高い https://arxiv.org/pdf/1608.05246.pdf
2017 University of Chicago, TTI-Chicago Examining the Impact of Blur on Recognition by Convolutional Networks Semantic Segmentation fine-tuned with a mix of sharp and range of defocus kernels (FT-Mix) Hamming distances network scale blurの影響の検証 ただのdeblurより精度向上 Sharp & Camera Shakeによるfinetuneがベスト https://arxiv.org/pdf/1611.05760.pdf
2017 AGH University of Science and Technology Image Recognition with Deep Neural Networks in Presence of Noise - Dealing with and Taking Advantage of Distortions Image classification data augmentation ノイズによる分類誤差の検証 シビアな条件のみCNNでBM3Dよりわずかに精度向上 BM3D https://www.researchgate.net/profile/Michal_Koziarski/publication/319238759_Image_recognition_with_deep_neural_networks_in_presence_of_noise_-_Dealing_with_and_taking_advantage_of_distortions/links/5a65c2004585158bca52b573/Image-recognition-with-deep-neural-networks-in-presence-of-noise-Dealing-with-and-taking-advantage-of-distortions.pdf
2019 Toyota Research Institute An Attention-based Recurrent Convolutional Network for Vehicle Taillight Recognition Tail Light Detection https://arxiv.org/pdf/1906.03683.pdf
2016 Tohoku University Traffic Light Detection Considering Color Saturation Using In-Vehicle Stereo Camera TLR LEDフリッカ 輝度飽和は隣接領域から判定 https://www.jstage.jst.go.jp/article/ipsjjip/24/2/24_349/_pdf/-char/ja
2018 Shandong University Robust Lane Detection for Complicated Road Environment Based on Normal Map Lane Detection complicated road environment 勾配推定 ステレオでデプスを出す http://www.mit.edu/~yanyanxu/doc/ACCESS_Yuan_2018.pdf
2018 Mobileye On a Formal Model of Safe and Scalable Self-driving Cars ADAS https://arxiv.org/pdf/1708.06374.pdf
2018 Mobileye Vision Zero: Can Roadway Accidents be Eliminated without Compromising Traffic Throughput ADAS brakeタイミングに関する数式? REMがあれば車線検出が不要とか https://www.mobileye.com/responsibility-sensitive-safety/vision_zero_with_map.pdf https://s21.q4cdn.com/600692695/files/doc_presentations/2019/01/Mobileye_CES2019.pdf
2019 Tampere University Architecture Search by Estimation of Network Structure Distributions NAS probabilistic representation of a neural network structure 20GPU days, 77.29%@CIFAR-100 Shake-Shake [68] https://arxiv.org/pdf/1908.06886.pdf
2019 Xiaomi SCARLET-NAS: Bridging the gap Between Scalability and Fairness in Neural Architecture Search NAS SCARLET (SCAlable supeRnet with Linearly Equivalent Transformation), harmonize the supernet training 76.9% top-1 accuracy on ImageNet https://arxiv.org/pdf/1908.06022.pdf
2019 Inria, CNRS Adaptative Inference Cost With Convolutional Neural Mixture Models Acceleration Convolutional Neural Mixture Models (CNMMs) セマセグでの評価もある, CNNのアンサンブル法 https://arxiv.org/pdf/1908.06694.pdf
2018 Cornell University, Fudan University, Tsinghua University, FAIR MULTI-SCALE DENSE NETWORKS FOR RESOURCE EFFICIENT IMAGE CLASSIFICATION Acceleration MSDNet 下記からの引用, anytime classification, budgeted batch classification https://arxiv.org/pdf/1703.09844.pdf
2019 Tsinghua University, Baidu, University of Oxford Improved Techniques for Training Adaptive Deep Networks Acceleration Adaptive inference 上記Adaptative Inference Cost ...より精度が高い MSDNet https://arxiv.org/pdf/1908.06294.pdf https://github.com/kalviny/IMTA
2019 Nanjing University of Science and Technology, Dalian University of Technology, Google, SenseTime, Nankai University Image Formation Model Guided Deep Image Super-Resolution Super Resolution エリアシングのなさで抜きんでてる、シンプルなアルゴ RDN [35], DBPN [6] https://arxiv.org/pdf/1908.06444.pdf
2019 Chinese Academy of Sciences Consistent Scale Normalization for Object Recognition Object Detection Consistent Scale Normalization (CSN) 46.5 mAP with a ResNet-101(COCO) SNIP, SNIPER https://arxiv.org/pdf/1908.07323.pdf
2019 Dalian University of Technology, Adobe Towards High-Resolution Salient Object Detection Object Detection Attended Patch Sampling, Saliency https://arxiv.org/pdf/1908.07274.pdf https://github.com/yi94code/HRSOD
2019 Texas A&M University, MIT-IBM Watson AI Lab AutoGAN: Neural Architecture Search for Generative Adversarial Networks NAS GANのためのNAS FID:31.01 ProbGAN[14] https://arxiv.org/pdf/1908.03835.pdf https://github.com/TAMU-VITA/AutoGAN
2018 A Survey on Shadow Detection Techniques in a Single Image Shadow removal 最も充実したサーベイ http://itc.ktu.lt/index.php/ITC/article/download/15012/9331
2012 Zhejiang University Review of Shadow Detection and De-shadowing Methods in Remote Sensing Shadow removal 4アプローチのPro/Con
2012 Lovely Professional University Review on Shadow Detection and Removal Techniques/Algorithms Shadow removal http://www.ijcst.com/vol31/3/rajni.pdf
2016 Gachon University A Review on various widely used shadow detection methods to identify a shadow from images Shadow removal 検出のみの簡単なサーベイ http://www.ijsrp.org/research-paper-0716/ijsrp-p5527.pdf
2016 SHADOW DETECTION AND REMOVAL FROM URBAN HIGH RESOLUTION REMOTE SENSING IMAGES Shadow removal HSV, normalized saturation-intensity difference index (NSVDI) NSVDIは簡単に試せる http://ena.lp.edu.ua/bitstream/ntb/37386/1/5_42-49.pdf
2013 Shadow Detection and Removal from a Single Image Using LAB Color Space Shadow removal Lab http://www.cit.iit.bas.bg/CIT_2013/v13-1/S_Murali,%20V_Govindan.pdf
2013 Queensland University of Technology Dealing with Shadows: Capturing Intrinsic Scene Appearance for Image-based Outdoor Localisation Shadow removal shadow invariant images 理論丁寧 http://www.robots.ox.ac.uk/~mobile/Papers/2013IROS_corke.pdf
2017 Eliminating the observer effect: Shadow removal in orthomosaics of the road network Shadow removal 車載, BEV http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w3/Tanathong_Eliminating_the_Observer_ICCV_2017_paper.pdf
2009 REMOVING SHADOWS FROM A SINGLE REAL-WORLD COLOR IMAGE Shadow removal log-logの射影がベース http://www.paper.edu.cn/scholar/showpdf/OUT2YNxIOTT0IxeQh
2006 Shanghai JiaoTong University Shadow Removal from a Single Image Shadow removal separate the vague shadows, color invariant http://lxu.me/mypapers/XuL_ShadowRemoval.pdf
2017 Chinese Academy of Sciences DeshadowNet: A Multi-context Embedding Deep Network for Shadow Removal Shadow removal DeshadowNet, global localization/appearance/semantic modeling network 300ms(640 × 480) http://www.cs.cityu.edu.hk/~rynson/papers/cvpr17a.pdf
2013 Wuhan University Fast Shadow Removal Using Adaptive Multi-scale Illumination Transfer Shadow removal interactive brushing, adaptive illumination transfer approach http://graphvision.whu.edu.cn/papers/EGauthorGuidelines-cgf-fin.pdf
2011 University of Illinois Single-Image Shadow Detection and Removal using Paired Regions Shadow removal Graph-cut Inference http://dhoiem.cs.illinois.edu/publications/cvpr11_shadow.pdf
2007 University of Haifa Texture-Preserving Shadow Removal in Color Images Containing Curved Shadow removal penumbra scale factors http://cs.haifa.ac.il/hagit/papers/CONF/CVPR07_ArbelHelOr-shadowRemoval.pdf
2019 The Chinese University of Hong Kong, Chinese Academy of Sciences Mask-ShadowGAN: Learning to Remove Shadows from Unpaired Data Shadow removal CycleGAN Gong et al. [8] https://arxiv.org/pdf/1903.10683.pdf
2015 The University of Western Australia Automatic Shadow Detection and Removal from a Single Image Shadow removal CNN, CRF, SLIC, SMOTE, GMM, EM, Umbra/Penumbra https://salman-h-khan.github.io/papers/TPAMI15.pdf
2011 EPFL REMOVING SHADOWS FROM IMAGES USING COLOR AND NEAR-INFRARED Shadow removal NIR, Umbra/Penumbra https://www.cis.rit.edu/~cnspci/references/dip/nir_removing_shadows/salamati2011.pdf
2012 Google Inc. Shadow Removal for Aerial Imagery by Information Theoretic Intrinsic Image Analysis Shadow removal texture and illumination components, non-parametric kernel-based quadratic entropy formulation, Energy Minimization by PCG https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37743.pdf
2019 Shandong Technology and Business University Image Shadow Removal Using End-to-End Deep Convolutional Neural Networks Shadow removal RSnet, encoder–decoder network, small refinement network.
2006 University of East Anglia Simple Shadow Removal Shadow removal single scaling factor https://infoscience.epfl.ch/record/111781/files/piecewise_shadows.pdf
2002 The University of East Anglia Removing Shadows from Images Shadow removal log(R/G) vs log(B/G)で射影する元祖 https://www.cs.sfu.ca/~mark/ftp/Eccv02/shadowless.pdf
2012 Recovery of Chromaticity Image Free from Shadows via Illumination Invariance Shadow removal https://pdfs.semanticscholar.org/ad22/03598d569904697c9c6c9f21728d6e5851a2.pdf
2019 SenseTime, The Chinese University of Hong Kong Differentiable Learning-to-Group Channels via Groupable Convolutional Neural Networks Image classification Dynamic Grouping Convolution cosine learning rate schedule [16] and weight initialization of [6] ResNeXt101 43M 79.9 https://arxiv.org/pdf/1908.05867.pdf
2019 Zhejiang University See Clearer at Night: Towards Robust Nighttime Semantic Segmentation through Day-Night Image Conversion Semantic Segmentation CycleGAN, ERF-PSPNet セマセグの精度が夜間で低下することへの対策 夜画像を生成し、昼と同じラベルを与える BDD Datasetを使用 https://arxiv.org/pdf/1908.05868.pdf
2019 Stanford, NVIDIA A Delay Metric for Video Object Detection: What Average Precision Fails to Tell Object Detection delay metric, Key Frame based Methods video評価におけるAPの欠点 NAB Score, CaTDet Delay https://arxiv.org/pdf/1908.06368.pdf
2017 NEC ACCELERATED RANSAC FOR 2D HOMOGRAPHY ESTIMATION BASED ON GLOBAL BRIGHTNESS CONSISTENCY RANSAC GLOBAL BRIGHTNESS CONSISTENCY シーンによってUSACの方がRANSACに対しx54.6 iter削減 USAC https://www.nec.com/en/global/rd/people/docs/icip2017_nakano.pdf
2008 The University of North Carolina A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus RANSAC spd-up:~305.7 PROSAC http://inf.ethz.ch/personal/pomarc/pubs/RaguramECCV08.pdf
2019 the University of Tokyo How Far Should Self-Driving Cars ‘See’? Effect of Observation Range on Vehicle Self-Localization SLAM ERROR AND MATCHING TIMEを評価 Velodyne LiDAR VLP-16, GPS, IMU, and CAN 8.1cm誤差、39.3 ms matching time https://arxiv.org/ftp/arxiv/papers/1908/1908.06588.pdf
2019 End-to-End Deep Neural Network Design for Short-term Path Planning Path Planning https://hal.archives-ouvertes.fr/hal-02266802/document
2019 Tsinghua University Real-time lane detection and tracking for autonomous vehicle applications Lane Detection model-based clustering 93.4%, 7ms(i7-6820EQ, 768x480) https://journals.sagepub.com/doi/pdf/10.1177/0954407019866989
2001 Universit´e Blaise Pascal A model-driven approach for real-time road recognition Lane Detection confidenceの算出方法参考 https://www.researchgate.net/publication/220465009_A_model-driven_approach_for_real-time_road_recognition
2004 Universitat Autonoma de Barcelona, Volkswagen Detection of Lane Markings based on Ridgeness and RANSAC Lane Detection ridgeness measure, RANSAC 円弧カーブの投影モデルをフィッティング カーブに強い http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.135.7283&rep=rep1&type=pdf
2009 Georgia Institute of Technology ROBUST LANE DETECTION AND TRACKING WITH RANSAC AND KALMAN FILTER Lane Detection RANSAC Kalman filterでラインの位置と方向、それらの速度を追跡
2018 Yeungnam University Lane Detection Using Labeling Based RANSAC Algorithm Lane Detection Canny, IPM, Morphology, K-means, RANSAC Gauss-Newtonで2次多項式係数を求めるlane fitting https://waset.org/publications/10008894/lane-detection-using-labeling-based-ransac-algorithm
2014 California Institute of Technology Real time Detection of Lane Markers in Urban Streets Lane Detection Hough Transform, RANSAC Spline fitting IPMの行列が記載されている、遠くの破線・カーブが苦手そう Homography参考 https://arxiv.org/pdf/1411.7113.pdf
2019 NY InverseRenderNet: Learning single image inverse rendering Inverse Rendering CNNでalbedo/normalを出す https://arxiv.org/pdf/1811.12328.pdf
2016 University of Technology Sydney Deep Neural Network for Structural Prediction and Lane Detection in Traffic Scene Lane Detection IPM, RANSAC SVM<CNN http://islab.ulsan.ac.kr/files/announcement/552/Deep%20Neural%20Network%20for%20Structural%20Prediction%20and%20lane%20detection%20in%20traffic%20scene.pdf
2015 Campus Universitario de Santiago Multimodal inverse perspective mapping IPM multimodal sensor fusion, laser range finder, Inverse projection LiDARで障害物を除去したIPM(using a laser sensor to detect mappable regions) http://www.cvc.uab.es/~asappa/publications/J__Elsevier_IF_Vol_24_July_2015_pp_108-121.pdf
2019 Zhejiang University A Multimodal Vision Sensor for Autonomous Driving Stereo, Polarization, Panoramic Sony IMX250MZR, 45degずつ4偏光、DOPで水たまり検知 https://arxiv.org/pdf/1908.05649.pdf
2019 Huazhong University of Science and Technology IoU-balanced Loss Functions for Single-stage Object Detection Object Detection IoU-balanced classification loss improve AP by 1.1%(RetinaNet ResNet50) https://arxiv.org/ftp/arxiv/papers/1908/1908.05641.pdf
2019 Shanghai Jiao Tong University, Huawei R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Object Detection Remote sensing, Rotation detection https://arxiv.org/pdf/1908.05612.pdf
Einconv: Exploring Unexplored Tensor Decompositions for Convolutional Neural Networks
2016 Nanyang Technological University DEPTH OF FIELD GUIDED REFLECTION REMOVAL Highlight Removal Multi-scale Background Edge Extraction 影分離に応用できないか https://rose.ntu.edu.sg/Publications/Documents/Reflection%20Removal/Depth%20of%20field%20guided%20reflection%20removal.pdf
2010 University of Illinos Real-time Specular Highlight Removal Using Bilateral Filtering Highlight Removal http://vision.ai.illinois.edu/publications/eccv-10-qingxiong-yang.pdf
2015 Xi’an Jiaotong University Saturation-preserving Specular Reflection Separation Highlight Removal dichromatic reflection model Matlab code on a 3.4GHz Intel Core i7 cpu is 46.8s https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Liu_Saturation-Preserving_Specular_Reflection_2015_CVPR_paper.pdf
2017 EPFL Single Image Reflection Suppression Reflection Suppression Laplacian data fidelity term and an l0 gradient sparsity term 反射像の低減にとどまる Li and Brown [12] Wan et al. [22] https://infoscience.epfl.ch/record/227363/files/2017-CVPR-Arvanitopoulos.pdf;
2003 The University of Tokyo Separating Reflection Components of Textured Surfaces using a Single Image Highlight Removal chromaticity intensity space, intensity logarithmic differentiation http://ljk.imag.fr/membres/Bill.Triggs/events/iccv03/cdrom/iccv03/0870_tan.pdf
2011 Cyprus Institute CaSToRC A Survey of Specularity Removal Methods Highlight Removal Dichromatic Reflectance Model DoPでspecularを分離(拡散反射は無偏光) http://vcg.isti.cnr.it/Publications/2011/ABC11/j.1467-8659.2011.01971.x.pdf
2015 ? Fast and High Quality Highlight Removal from A Single Image Highlight Removal L2 NORMALIZED DICHROMATIC MODEL 2色性反射モデルを一般化 STAR https://arxiv.org/pdf/1512.00237.pdf
2015 Sogang University BREN: Body Reflection Essence-Neuter Model for Separation of Reflection Components Highlight Removal dichromatic reection Wikipediaの2色性反射モデルのページで引用 maximum chromaticity-based methods https://www.researchgate.net/publication/275056779_BREN_Body_Reflection_Essence-Neuter_Model_for_Separation_of_Reflection_Components/link/5554812b08aeaaff3bf1dcab/download
2015 Chinese Academy of Sciences An Image Highlights Removal Method with Polarization Principle Highlight Removal 下と著者は異なる https://pdfs.semanticscholar.org/318d/5ccabbf3047130ef2222dc76530e76220c88.pdf
2016 Chinese Academy of Sciences A Method of Removing Reflected Highlight on Images Based on Polarimetric Imaging Highlight Removal SSS HPのデモで引用されていた Brewster角近傍でなくても偏光で反射を低減可能 (無偏光の屈折成分の抽出) DOLPは4つの偏光角の反射強度を使う DOLPは反射角度に依存するために、法線が可視化できる http://downloads.hindawi.com/journals/js/2016/9537320.pdf https://www.sony-semicon.co.jp/products_ja/IS/sensor5/index.html
2008 Tandent Vision Science, Inc. US 8,319,821 B2 POLARIZATION-BASED SHADOW DETECTION Polarimetric imaging https://patentimages.storage.googleapis.com/70/4e/4d/fe569a5804d9e2/US8319821.pdf
2006 University of Pennsylvania Separation and contrast enhancement of overlapping cast shadow components using polarization Polarimetric imaging degree-of-polarization image 偏光による影分離の先行例 特許の参考、影と偏光の関係について述べているので理論の根拠として使えるか DoP定義式 0, 45, 90degでlinear polarizerを回転 DoP画像を見ても影除去・検出はできていない 唯一価値がありそうな知見は、“shadow” cast by the much weaker fluorescent light from the right hand side is revealed https://www.osapublishing.org/oe/abstract.cfm?uri=OE-14-16-7099
2019 Stanford University Segmenting the Future Semantic Segmentation LSTMではなく3D conv 複数フレーム入力→Encoder→Conv3D Forecasting Module→Decoder motionなしより高精度 OSSは準備中 mIoU:40.81(Long-term)~65.08(Short-term) XS2XS, ConvLSTM https://arxiv.org/pdf/1904.10666.pdf https://github.com/eddyhkchiu/segmenting_the_future
Intelligent Automation Inc Stereo Imaging with Uncalibrated Camera Stereo F行列推定し画像変換 https://www.researchgate.net/profile/Chiman_Kwan/publication/220844935_Stereo_Imaging_with_Uncalibrated_Camera/links/563a326d08ae337ef2983d69/Stereo-Imaging-with-Uncalibrated-Camera.pdf
2012 CMU Online Continuous Stereo Extrinsic Parameter Estimation Camera Calibration 振動等の外乱からextrinsicはonlineが必要 https://kilthub.cmu.edu/articles/Online_Continuous_Stereo_Extrinsic_Parameter_Estimation/6557093/files/12039368.pdf
2012 Xi’an University of Technology A New Method of Stereo Localization Using Dual-PTZ-Cameras Rectification MSER, SIFT intrinsic/extrinsic parameter両方必要 異焦点の実験では、ズーム補正(焦点距離比による縮小)が前処理として必要 SIFTにMSERを組み合わせることでマッチングが大幅に低減 https://www.researchgate.net/profile/Xin_Jing8/publication/262168457_A_New_Method_of_Stereo_Localization_Using_Dual-PTZ-Cameras/links/554316b20cf23ff716837b86/A-New-Method-of-Stereo-Localization-Using-Dual-PTZ-Cameras.pdf
2018 Harbin Engineering University Automatic Rectification of the Hybrid Stereo Vision System Rectification ASIFT 360degカメラと通常カメラのステレオ https://www.researchgate.net/publication/328150741_Automatic_Rectification_of_the_Hybrid_Stereo_Vision_System
1999 Microsoft Research Computing Rectifying Homographies for Stereo Vision Rectification Similarity Transform 平行化に伴う歪の最小化, 平行化に加えshear? http://dev.ipol.im/~morel/Dossier_MVA_2011_Cours_Transparents_Documents/2011_Cours7_Document2_Loop-Zhang-CVPR1999.pdf
2009 Czech Technical University Epipolar Rectification for Stereovision Rectification omnidirectional camera, spectral loss State of the artのまとめが参考になる Geyer and Daniilidis, Pollefeys’
2011 Gwangju Institute of Science and Technology An efficient image rectification method for parallel multi-camera arrangement Rectification 有料のため読んでない https://ieeexplore.ieee.org/abstract/document/6018853
1999 Heriot-Watt University Projective Rectification without Epipolar Geometry Rectification homographies, Levenberg-Marquardt algorithm, hierarchical rectification 普通の再投影誤差(L2)最小化 疑似コードあり https://www.researchgate.net/profile/Francesco_Isgro/publication/3813442_Projective_rectification_without_epipolar_geometry/links/09e4150b20494a205e000000.pdf
2013 Mitsubishi Electric Research Laboratories, Inc. Disparity Estimation of Misaligned Images in a Scanline Optimization Framework Stereo Cross-check, semi-global matching http://www.merl.com/publications/docs/TR2013-025.pdf
2012 CSIRO Mathematics Closed-form Stereo Image Rectification Rectification uncalibrated stereo, keystone e↵ect correction, fundamental matrix distortion軽減 Mallon and Whelan’s method http://vision-cdc.csiro.au/changs/doc/sun12ivcnz.pdf http://vision-cdc.csiro.au/rectify2v/
1999 K.U.Leuven A simple and efficient rectification method for general motion Rectification cylindrical rectification, fundamental matrix epipole中心の極座標表現 https://www.cs.unc.edu/~marc/pubs/PollefeysICCV99.pdf
2019 CASIA, University of Oxford Fast Online Object Tracking and Segmentation: A Unifying Approach Tracking Siamese approach, video object segmentation ECO https://arxiv.org/pdf/1812.05050.pdf http://www.robots.ox.ac.uk/~qwang/SiamMask/
2019 NAVER Corp. EXTD: Extremely Tiny Face Detector via Iterative Filter Reuse Object Detection 数層の浅い軽量なbackbone network(MobileNet v2のInverted Residual Block)を繰り返し再帰的にかける SSD-likeなものとFPN-likeなものを提案 PReLU (またはLeakyReLU) の方が良い #Params1/200でmAP-0.3 https://arxiv.org/pdf/1906.06579.pdf https://uiiurz1.hatenablog.com/entry/2019/06/24/221506
2019 University of Chinese Academy of Sciences, University of Oxford, Huawei CenterNet: Keypoint Triplets for Object Detection Object Detection CenterNet CornerとCenterの3点のembedding情報のみをpoolingするため、ROI poolingのように計算量が大きくならない CornerとCenterを別ブランチで推定 mAP47.0, 340ms/43.5, 270ms CornerNet https://engineer.dena.jp/2019/07/cv-papers-19-keypoint-object-detection.html
2019 UT Austin, UC Berkeley Objects as Points Object Detection CenterNet, Deep Layer Aggregation (DLA) Real Time Object DetectionのSOTA 中心のみをヒートマップで予測 アンカーが存在せず、bounding boxサイズを直接、クラス毎に出力 deformable convolutionレイヤをupsampling部に用いている 向きを回帰して3D BBox推定を行う CornerNetの律速はcombinatorial grouping stage(keypointのペア探索) classごとにFmapのピークを100個検出 mAP45.1, 7.8fps/41.6, 28fps(CornerNetと同精度で7倍速) CornerNet https://arxiv.org/pdf/1904.07850v2.pdf https://github.com/xingyizhou/CenterNet https://paperswithcode.com/task/real-time-object-detection https://www.slideshare.net/DeepLearningJP2016/dlobjects-as-points
2009 University of Udine Stereo Rectification of Un-calibrated and Heterogeneous Image-Pairs Rectification different focal lengths and/or image resolutions, Levenberg-Marquardt algorithm Fusielloらと異なり、カメラパラを求めない直接平行化 焦点距離比に基づきゼロ埋めと縮小で同一サイズにする 平行化として、SIFTマッチングペアについてm’H’FHmが最小となるH’,Hを求める 異焦点対応だが平行化が面倒(LM法) https://pdfs.semanticscholar.org/2afe/d3c5397736b422050496c501f70d63d2ac50.pdf
2017 Kyungpook National University Calibration of a Different Field-of-view Stereo Camera System using an Embedded Checkerboard Pattern Rectification 特殊なチェスボード FOV大小のステレオという特許と同じ設定 式が全然出てこない(Fusiello2000を使っているらしい) https://www.scitepress.org/papers/2017/62678/62678.pdf
2013 Paris-Est Marne-la-Vallee University Camera array image rectification and calibration for stereoscopic and autostereoscopic displays Rectification homography, LevenbergMarquartd method, quasi Euclidean 多眼への拡張 解像度ばらつきにも対応 https://hal-upec-upem.archives-ouvertes.fr/hal-00908586/document
2009 National Tsing Hua University Self Image Rectification for Uncalibrated Stereo Video with Varying Camera Motions and Zooming Effects Rectification 2.5fps http://www.mva-org.jp/Proceedings/2009CD/papers/02-03.pdf
2000 Universita di Verona A Compact Algorithm for Rectification of Stereo Pairs Rectification 本文中にMATLAB code 異焦点で使えることが2017Calibration of a Different ...で言及されている 光学中心cを求め、 誤差はノイズσ0.025までは線形増大 エピポーラ線算出不要だがtwo vector cross multiplicationsにより計算量増大 http://www.diegm.uniud.it/fusiello/papers/mva99.pdf https://webcourse.cs.technion.ac.il/236873/Winter2015-2016/ho/WCFiles/Rectification.pdf
2011 Fuzhou University Stereo rectification of calibrated image pairs based on geometric transformation Rectification 先行研究のまとめが参考になる two virtual camerasが新しい y,z軸周りの回転で平行化 座標変換と再投影の2ステップ 途中から焦点距離が同一という仮定が入る https://pdfs.semanticscholar.org/6bcf/f783d1171f3ee3f6a4a8f8ef96533cab48e2.pdf
2016 UC Berkeley, Nokia Depth from Semi-Calibrated Stereo and Defocus Stereo 補助ステレオカメラでデプス Fusielloより平行化高精度 https://zpascal.net/cvpr2016/Wang_Depth_From_Semi-Calibrated_CVPR_2016_paper.pdf
2010 Paris-Est/École des Ponts ParisTech Three-step image rectification Rectification Fusielloが一番いい? https://hal-enpc.archives-ouvertes.fr/file/index/docid/654415/filename/BMVC10.pdf
2011 Universit´e Paris-Est Quasi-Euclidean Epipolar Rectification Rectification Fusielloの制約(主点の固定)をx方向だけ自由に MissStereo動作確認済み http://www.ipol.im/pub/art/2011/m_qer/article_lr.pdf http://www.ipol.im/pub/art/2011/m_qer/?utm_source=doi
2008 Quasi-Euclidean Uncalibrated Epipolar Rectification Rectification MATLAB code http://www.diegm.uniud.it/fusiello/papers/qeur.pdf http://www.diegm.uniud.it/fusiello/demo/rect/
2011 Quasi-Euclidean epipolar rectification of uncalibrated images Rectification uncalibrated stereo MATLAB code 未較正の場合 Sampson誤差近似の最小化 https://core.ac.uk/download/pdf/53327714.pdf http://www.diegm.uniud.it/fusiello/demo/rect/ https://webcourse.cs.technion.ac.il/236873/Winter2015-2016/ho/WCFiles/Rectification.pdf
2016 Pedestrian lane detection in unstructured scenes for assistive navigation Lane Detection Vanishing point estimation, color tensor 路面標示なし 消失点推定参考 最高速度・精度 2階微分から求めたdominant local orientationに基づき、各エッジ画素からVP候補にvoting(これが重いのか) 595ms https://reader.elsevier.com/reader/sd/pii/S1077314216000369?token=CBF4142865CCB3AB8088BE1684620961065C9A71DDD4DBC6596D9DCA535FBE5DAF65D43EACBED30D98AF2162D708E171 https://documents.uow.edu.au/~phung/plvp_dataset.html
2011 EDLines: A real-time line segment detector with a false detection control 下記からの引用 LSDの11倍速い http://c-viz.eskisehir.edu.tr/pdfs/EDLines2011ICIP.pdf https://github.com/shaojunluo/EDLinePython https://github.com/CihanTopal/ED_Lib
2018 Karabuk University A Study on Real-Time Detection Method of Lane and Vehicle for LaneChange Assistant System Using Vision System on Highway Lane Detection EDLines, Vanishing point estimation 43ms https://reader.elsevier.com/reader/sd/pii/S2215098617317317?token=E6F75C83EFC772C7D47095F6429B912600486F11E89AB23B8B5084EBC15A18C6A373E027203468BC1C42010C25ED336D
2008 Technion Active Polarization Descattering Dehaze https://www.researchgate.net/profile/Tali_Treibitz/publication/23791813_Active_Polarization_Descattering/links/02e7e532ac0af505b2000000.pdf
2003 Columbia University Polarization-based vision through haze Dehaze http://webee.technion.ac.il/~yoav/publications/haze_osa.pdf
2018 University of Oxford Recovering stable scale in monocular SLAM using object-supplemented bundle adjustment SLAM 物体サイズのprior利用したscale推定 https://ora.ox.ac.uk/objects/uuid:74aaa7b5-5b14-4feb-b672-fa1802a804c6/download_file?file_format=pdf&safe_filename=Frost%2Bet%2Bal.pdf&type_of_work=Journal+article
2004 Indian Institute of Technology Depth Estimation and Image Restoration Using Defocused Stereo Pairs DFD, stereo http://www.ee.iitm.ac.in/~raju/journals/j14.pdf
2010 University of Udine Stereo rectification of uncalibrated and heterogeneous images image shrinking, rectification, SIFT still&video(w/ zoom)のペア x’TH’TF∞Hx最小化による平行化変換(homography)推定 https://pdfs.semanticscholar.org/2afe/d3c5397736b422050496c501f70d63d2ac50.pdf
2000 INRIA Matching Images with Different Resolutions scale-space representatio https://hal.inria.fr/inria-00548297/document
1999 The University of Readin Critical Motion Sequences for the Self-Calibration of Cameras and Stereo Systems with Variable Focal Length Camera Calibration Potential Absolute Conics https://hal.inria.fr/inria-00525676/document
Method for measuring stereo camera depth accuracy based on stereoscopic vision Stereo depth resolution参考 距離の2乗に比例 https://www.researchgate.net/profile/Mikko_Kytoe/publication/235349563_Method_for_measuring_stereo_camera_depth_accuracy_based_on_stereoscopic_vision/links/00b4951af44a7e17f5000000/Method-for-measuring-stereo-camera-depth-accuracy-based-on-stereoscopic-vision.pdf
2006 University Siegen Fusion of Stereo-Camera and PMD-Camera Data for Real-Time Suited Precise 3D Environment Reconstruction Stereo “Winner Takes It All” and ”Simulated Annealing” stereo matching algorithm 異焦点ステレオの視差-距離変換式(2) 平行化の言及なし https://www.researchgate.net/profile/Martin_Stommel/publication/221063819_Fusion_of_Stereo-Camera_and_PMD-Camera_Data_for_Real-Time_Suited_Precise_3D_Environment_Reconstruction/links/0a85e53435f1826115000000/Fusion-of-Stereo-Camera-and-PMD-Camera-Data-for-Real-Time-Suited-Precise-3D-Environment-Reconstruction.pdf#page=7
Katholieke Universiteit Leuven Euclidean 3D reconstruction from image sequences with variable focal lengths Camera Calibration 異なる焦点距離の推定がテーマ https://www.researchgate.net/profile/Marc_Proesmans/publication/2882771_Euclidean_3D_reconstruction_from_image_sequences_with_variable_focal_lengths/links/53ed13820cf26b9b7dc14646.pdf
1990 Using Vanishing Points for Camera Calibration Camera Calibration http://www.close-range.com/docs/Using_vanishing_points_for_camera_calibration--Caprile-Torre.pdf
1999 The University of Readin Critical Motion Sequences for the Self-Calibration of Cameras and Stereo Systems with Variable Focal Length Stereo Variable Focal Length 特許の参考 https://hal.inria.fr/inria-00525676/document
2019 Tencent Few-Shot Object Detection with Attention-RPN and Multi-Relation Detecto Object Detection Attention-Based Region Proposal Network, Few-Shot 恐ろしく少ない学習で認識できる online学習ができる? 60000iterations LSTD https://arxiv.org/pdf/1908.01998.pdf https://github.com/fanq15/Few-Shot-Object-Detection-Dataset
2012 CMLA, ENS Cachan LSD: a Line Segment Detector LSD https://www.ipol.im/pub/art/2012/gjmr-lsd/article.pdf http://www.ipol.im/pub/art/2012/gjmr-lsd/?utm_source=doi
2019 POLITECNICO DI TORINO Design and Simulation of Autonomous Driving Algorithms Lane Detection Canny, Hough, Kalman Filter Pythonコード付きのM論文, IPMの式(4.2.3), 車の運動モデルの式が詳しい https://webthesis.biblio.polito.it/11650/1/tesi.pdf
2016 Moscow Institue of Physics and Technology, MIT Media Lab Shape from Mixed Polarization SfP Specular+Diffuse Reflection 特許の参考 https://arxiv.org/pdf/1605.02066.pdf
2019 University of Chinese Academy of Sciences, TuSimple Revisiting Feature Alignment for One-stage Object Detection Object Detection RoIConv im2colとRoIAlignの関係を分析 RetinaNetが + RoIConvでAP5%向上 CenterNet https://arxiv.org/pdf/1908.01570.pdf
2018 UC Berkeley, Facebook MIXED PRECISION QUANTIZATION OF CONVNETS VIA DIFFERENTIABLE NEURAL ARCHITECTURE SEARCH NAS DNAS, GumbelSoftmax lossに#PARAM/#FLOPsを入れる https://arxiv.org/pdf/1812.00090.pdf
2018 UC Berkeley, Princeton University, Facebook FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search NAS Operator Latency LUT lossにlatencyを入れる https://arxiv.org/pdf/1812.03443.pdf https://github.com/facebookresearch/mobile-vision https://qiita.com/cvusk/items/e7c9bb30c801996cd973
2019 DeepScale SqueezeNAS: Fast neural architecture search for faster semantic segmentation Semantic Segmentation, NAS MAC/Latency-aware Search Fbnetに近い 34.57ms(Cityscapes), MobileNetV3と同等, 7~14.6GPU days https://arxiv.org/pdf/1908.01748.pdf
2019 Bosch Group Pruning using a Bounded-`p norm for Group Gating and Regularization Model Compression Channel level sparsity https://lmb.informatik.uni-freiburg.de/Publications/2019/Bro19a/mummadi_gcpr19.pdf
2019 Carnegie Mellon University Random Search and Reproducibility for Neural Architecture Search NAS Random Search with Weight Sharing 既出 https://arxiv.org/pdf/1902.07638.pdf https://github.com/liamcli/randomNAS_release
2019 Hong Kong Baptist University AutoML: A Survey of the State-of-the-Art AutoML サーベイ
2016 University of North Carolina Structure-from-Motion Revisited Visual localization https://demuc.de/papers/schoenberger2016sfm.pdf
2019 TU Munich To Learn or Not to Learn: Visual Localization from Essential Matrices Visual localization DSAC++, RelaPoseNet, SIFT + 5-Point https://arxiv.org/pdf/1908.01293.pdf
2015 The University of Western Australia Automatic Shadow Detection and Removal from a Single Image Shadow removal Bayesian, matting 曲面でうまくいかないことが課題 https://salman-h-khan.github.io/papers/TPAMI15.pdf
2017 Peking University, Dalian University of Technology ORGB: OFFSET CORRECTION IN RGB COLOR SPACE FOR ILLUMINATION-ROBUST IMAGE PROCESSING Shadow removal 影対策要注目、1-histeq(U,V)が有効 R vs Gの散布図が原点を通るようなオフセットを加える http://150.162.46.34:8080/icassp2017/pdfs/0001557.pdf
2013 Yonsei University Gradient-Enhancing Conversion for Illumination-Robust Lane Detection Lane Detection adaptive Canny(LDAで閾値決める) 色変換を次元圧縮とみなし Hough+モデルフィッティング(遠方だけ?2次) 96% IPM+grad-based http://diml.yonsei.ac.kr/papers/Gradient-Enhancing%20Conversion%20for%20Illumination-Robust%20Lane%20Detection.pdf
2018 A Robust Lane Detection Method Based on Vanishing Point Estimation Lane Detection LSD 白線のコントラストのためにR+G-Bを使用 scanでnoise filtering VP制約;線分中心の座標と角度からVPを通る直線との距離を算出 Correct detection rate:92.34%~ https://reader.elsevier.com/reader/sd/pii/S1877050918305489?token=8DAADEF6CAFCB06D8EF088EEAB7DD10425B2D2E5CDADA0AB59BDF5305590AB8DDC440D5658D8843D6F81F9B7F6AF724F
2019 Shandong University, Singapore University of Technology and Design Road Context-aware Intrusion Detection System for Autonomous Cars Autonomous Driving Road context-aware IDS (RAIDS), intrusion detection systems (IDSs), CAN 520ms以下が必須, 24+64層のCNNで画像の特徴量を生成しCANと合わせて2nd NNに入力し異常判定 https://arxiv.org/pdf/1908.00732.pdf
2018 Beijing University of Technology Efficient Traffic-Sign Recognition with Scale-aware CNN TSR OHEM, "Inception" module 356ms(K40, 960×1280), AP:85.19%(small, STSD) Faster R-CNN, RPN https://arxiv.org/pdf/1805.12289.pdf
2019 Tufts University, CMU, IBM Ablate, Variate, and Contemplate: Visual Analytics for Discovering Neural Architectures NAS Rapid Exploration of Model Architectures and Parameters コンパクトなベースラインを人手で探索してそれを最適化 https://arxiv.org/pdf/1908.00387.pdf https://github.com/dylancashman/remap_nas http://www.eecs.tufts.edu/~dcashm01/snacs/
2017 Speed/accuracy trade-offs for modern convolutional object detectors Object Detection http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_SpeedAccuracy_Trade-Offs_for_CVPR_2017_paper.pdf
2017 Cornell University Reconfiguring the Imaging Pipeline for Computer Vision RAW認識。Bayer化simができるCRIP。解像度1/4でも分類精度低下は1%未満。Bayerの疑似3ch化。 https://github.com/cucapra/approx-vision
2016 The University of Western Australia Automatic Shadow Detection and Removal from a Single Image Shadow removal DL応用の https://salman-h-khan.github.io/papers/TPAMI15.pdf
2018 University of Amsterdam Three for one and one for three: Flow, Segmentation, and Surface Normals Segmentation, Flow, and Surface Normals https://arxiv.org/pdf/1807.07473.pdf
2019 University of Southern California Every Pixel Counts ++: Joint Learning of Geometry and Motion with 3D Holistic Understanding Monocular Depth Estimation Odometry Motion/OF/Depthを別のNNで同時に出す Abs Rel:0.141(Eigen test split) https://arxiv.org/pdf/1810.06125.pdf https://github.com/chenxuluo/EPC
2016 Australian National University Reliable Scale Estimation and Correction for Monocular Visual Odometry Monocular Visual Odometry absolute scale スケール推定参考, Homography→pose→ camera height推定→scale補正 https://www.researchgate.net/profile/Dingfu_Zhou/publication/305257884_Reliable_Scale_Estimation_and_Correction_for_Monocular_Visual_Odometry/links/5bb9db8ca6fdcc9552d569c2/Reliable-Scale-Estimation-and-Correction-for-Monocular-Visual-Odometry.pdf
2019 Peking University Multi-level Domain Adaptive learning for Cross-Domain Detection Object Detection, Domain adaptation Image/Instance-Stage Adaptation, Multi-level Patch-based Loss https://arxiv.org/pdf/1907.11484.pdf
2019 University of Salerno, University of Granada DEEP LEARNING IN VIDEO MULTI-OBJECT TRACKING: A SURVEY Tracking DLベースのサーベイ https://arxiv.org/pdf/1907.12740.pdf
2017 SOFT-SLAM: Computationally Efficient Stereo Visual SLAM for Autonomous UAVs SLAM KITTIでLiDAR使わないSLAMの最上位, stereo https://pdfs.semanticscholar.org/df31/78e77fa6655bbcae65c00b732ef240d99fa5.pdf
2019 Uber Multi-Task Multi-Sensor Fusion for 3D Object Detection Object Detection AVOD http://openaccess.thecvf.com/content_CVPR_2019/papers/Liang_Multi-Task_Multi-Sensor_Fusion_for_3D_Object_Detection_CVPR_2019_paper.pdf
2019 In Defense of Pre-trained ImageNet Architectures for Real-time Semantic Segmentation of Road-driving Images Semantic Segmentation SwiftNet Real-time SSのSOTA 75.5% MIoU and achieves 39.9 Hz on 1024×2048 images on GTX1080Ti. https://arxiv.org/pdf/1903.08469v2.pdf https://paperswithcode.com/sota/real-time-semantic-segmentation-on-cityscapes
2017 University of Amsterdam Modeling Relational Data with Graph Convolutional Networks Graph Convolutional Network 下記で使われているGCNの最初の論文 https://arxiv.org/pdf/1703.06103.pdf https://qiita.com/tktktks10/items/98d21133cf3e121676c3
2019 Zhejiang University A Comparative Study of High-Recall Real-Time Semantic Segmentation Based on Swift Factorized Network Semantic Segmentation IAL, SwiftNet U-Netライク、decorderに工夫、t-SNE解析あり MIOU:72.2, 58.6FPS(1080Ti, CamVid, 2048 × 1024) Global convolution Networks (GCNet) https://arxiv.org/pdf/1907.11394.pdf https://github.com/Katexiang/swiftnet/tree/master/Swift_Factorized_Network(SFN)
2019 Carnegie Mellon University Memory- and Communication-Aware Model Compression for Distributed Deep Learning Inference on IoT Model Compression, Distillation Network of Neural Networks (NoNN) IoT想定で複数studentに分散処理(最終層で統合) x12高速化 https://arxiv.org/pdf/1907.11804.pdf
2019 Fraunhofer Heinrich Hertz Institute DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks Model Compression Context-based Adaptive Binary Arithmetic Coder (CABAC) 符号化によるモデルサイズ圧縮。速度への言及なし。 精度不変で0.3%のサイズ(VGG16) https://arxiv.org/pdf/1907.11900.pdf
2019 Huawei Learning Instance-wise Sparsity for Accelerating Deep Models Model Compression, Image classification instance-wise sparsity 正則化の変更(空間L2+ch/Layer L1) prune ratio:46.9(VGG16) https://arxiv.org/pdf/1907.11840.pdf
2018 ETH Domain Adaptive Faster R-CNN for Object Detection in the Wild Object Detection cross-domain robustness, gradient reverse layer (GRL) [15] cls,/reg.とROIpool前とを後段に回して整合性正則化
2019 Foveated image processing for faster object detection and recognition In embedded systems using deep convolutional neural networks from 3.59 FPS to 15.24 FPS, 92.0% of the baseline performance 取り寄せ中
2019 Technical University of Munich MultiDepth: Single-Image Depth Estimation via Multi-Task Regression and Classification Monocular Depth Estimation Multi-Task cls+reg loss SILog:16.05 https://arxiv.org/pdf/1907.11111.pdf
2019 Hanyang University From Big to Small: Multi-Scale Local Planar Guidance for Monocular Depth Estimation Monocular Depth Estimation BTS KITTIでtop SILog:11.67 https://arxiv.org/pdf/1907.10326.pdf
2018 Indian Institute of Technology Digital Foveation: An Energy-Aware Machine Vision Framework 消費電力76.5%減
2019 Hanyang University Evidence Filter of Semantic Segmented Image From Around View Monitor in Automated Parking System Semantic Segmentation GraphSLAM, Around View Monitor, evidence filter 自動駐車参考, セマセグの課題を解決, 白線・FS・障害物の3クラス https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8758815
2017 Weizmann Institute of Science On Detection of Faint Edges in Noisy Images Edge detection https://arxiv.org/pdf/1706.07717.pdf
2018 Motilal Nehru National Institute of Technology Allahabad ROAD SURFACE DETECTION FROM MOBILE LIDAR DATA Road Surface LiDAR, PCA Precision:98.85%, 24 minutes(MATLAB) https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-5/95/2018/isprs-annals-IV-5-95-2018.pdf
2019 Chongqing University An Efficient Compressive Convolutional Network for Unified Object Detection and Image Compression Compressive Sensing https://pdfs.semanticscholar.org/76ea/ce51586ad51044aeacb50ce254099eca647f.pdf
2019 Universidade Federal do Esp´ırito Santo Cross-Domain Car Detection Using Unsupervised Image-to-Image Translation: From Day to Night Object Detection CycleGAN, Fake-night images ELASの研究室?昼の画像だけから夜のラベルなし画像を用いた学習を行う fake-night+day:86.6% Night:92.0% https://arxiv.org/pdf/1907.08719.pdf
2019 Seoul National Universit ROI-Based LiDAR Sampling Algorithm in on-Road Environment for Autonomous Driving Object Detection LiDAR https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8755965
2019 University of Chinese Academy of Sciences MCF3D: Multi-Stage Complementary Fusion for Multi-Sensor 3D Object Detection Road Marking RecognitionD Object Detection LIDAR https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8756006
2018 Beihang University Receptive Field Block Net for Accurate and Fast Object Detection Object Detection 下記からの引用、速度精度両立 <50ms, SSDと同速度で5%向上(mAP on MS COCO) http://openaccess.thecvf.com/content_ECCV_2018/papers/Songtao_Liu_Receptive_Field_Block_ECCV_2018_paper.pdf
2019 Xidian University A Survey of Deep Learning-based Object Detection Object Detection Salient object detection, pose detection 網羅的なサーベイ https://arxiv.org/pdf/1907.09408.pdf
2018 City University of Hong Kong Progressively Complementarity-aware Fusion Network for RGB-D Salient Object Detection Object Detection complementarity-aware fusion 下記からの引用 http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Progressively_Complementarity-Aware_Fusion_CVPR_2018_paper.pdf
2019 University of Western Australia RGB-D image-based Object Detection: from Traditional Methods to Deep Learning Techniques Object Detection Deep fusion fusion系検出のサーベイとして有用 https://arxiv.org/pdf/1907.09236.pdf
2019 Beijing University of Posts and Telecommunications, Columbia University MemNet: Memory-Efficiency Guided Neural Architecture Search with Augment-Trim learning NAS MemNet 従来はメモリが手動設計より4倍ほど大きかったのを従来程度にまで低減 56GPU days ENASNet https://arxiv.org/pdf/1907.09569.pdf
2019 Beijing Institute of Technology, University of Technology Sydney Efficient Novelty-Driven Neural Architecture Search NAS EN2AS(efficient novelty-driven neural architecture search), a common search space used by Real et al. 2019 0.3GPU days Random Search WS, ENAS https://arxiv.org/pdf/1907.09109.pdf
2019 Jadavpur University Understanding Deep Learning Techniques for Image Segmentation Semantic Segmentation Unsupervised, Attention Models 解釈、サーベイとして有用 https://arxiv.org/pdf/1907.06119.pdf
1993 高速道路走行画像からの消失点推定に基づく実時間白線検出 Lane Detection https://www.jstage.jst.go.jp/article/ieejeiss1987/113/2/113_2_139/_pdf/-char/ja
2019 ETH A General Framework for Uncertainty Estimation in Deep Learning Autonomous driving adversarial attacks https://arxiv.org/pdf/1907.06890.pdf https://github.com/mattiasegu/A_General_Framework_for_Uncertainty_Estimation_in_Deep_Learning
2019 Michigan State University M3D-RPN: Monocular 3D Region Proposal Network for Object Detection Road Marking RecognitionD Object Detection BEV Mono3D, 3DOP https://arxiv.org/pdf/1907.06038.pdf http://cvlab.cse.msu.edu/project-m3d-rpn.html
2019 University of Waterloo, Facebook Efficient Segmentation: Learning Downsampling Near Semantic Boundaries Semantic Segmentation content-adaptive downsampling 不等間隔スパースサンプリングの補間により、速度と精度のバランスをとった。 MioU>0.85(Supervisely), 演算量5BFlops以上は頭打ち
2018 Intel Apprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy Model Compression 低ビット+distillation https://openreview.net/pdf?id=B1ae1lZRb
2019 Peking University, Microsoft Research Light Multi-segment Activation for Model Compression Model Compression -2.3%, 13.8%(CIFAR-10) https://arxiv.org/pdf/1907.06870.pdf
2018 ETH, Google DeepMind Model compression via distillation and quantization Model Compression, Distillation 上記からの引用 Quantized Distillation https://arxiv.org/pdf/1802.05668.pdf https://github.com/antspy/quantized_distillation
2019 ? Seeing Through Fog Without Seeing Fog: Deep Sensor Fusion in the Absence of Labeled Training Data Object Detection SSD, pix2pix LiDAR,RGB2系統のSSDを用意しMiddle Fusion。 入力層でdrop-out。 K-meansで解析し、層ごとのanchor boxを最適化。 https://arxiv.org/pdf/1902.08913.pdfh
2019 Horizon Robotics VarGNet: Variable Group Convolutional Neural Network for Efficient Embedded Computing NAS Variable Group Convolutional Network (VarGNet) Object Detection, Depthも評価, VGCでexpressiveness増加 https://arxiv.org/pdf/1907.05653.pdf
2019 Shanghai Jiao Tong University, Huawei PC-DARTS: Partial Channel Connections for Memory-Efficient Differentiable Architecture Search NAS PC-DARTS P-DARTSと大差なし 0.1GPU-days P-DARTS https://arxiv.org/pdf/1907.05737.pdf
2019 University of Chinese Academy of Sciences Cascade RetinaNet: Maintaining Consistency for Single-Stage Object Detection Object Detection Cas-RetinaNet, cascade, consistency headを2つに分岐、consistencyを改善 AP:41.1(COCO), 10fps(RTX 2080TI) CornerNet511, Mask R-CNN https://arxiv.org/pdf/1907.06881.pdf
2017 Tongji University Scale Recovery for Monocular Visual Odometry Using Depth Estimated with Deep Convolutional Neural Fields Visual odometry maximum likelihood ResNetでデプス推定,VO・depthをCRFで統合 T:2.68%,R: 0.0022deg./m(KITTI) VISO2 http://openaccess.thecvf.com/content_ICCV_2017/papers/Yin_Scale_Recovery_for_ICCV_2017_paper.pdf
2019 University of T¨ubingen Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming Object Detection Style transfer as data augmentation 霧・雪・ノイズ・ブラー耐性をstyle transfer DAで向上。モデル・データセットの比較が充実。 https://arxiv.org/pdf/1907.07484.pdf https://github.com/bethgelab/robust-detection-benchmark
2017 Road detection based on the fusion of Lidar and image data Free-space LiDAR, fusion, Adaboost https://journals.sagepub.com/doi/pdf/10.1177/1729881417738102
2019 UESTC, ETH, Google DeepLiDAR: Deep Surface Normal Guided Depth Prediction for Outdoor Scene from Sparse LiDAR Data and Single Color Image Depth LiDAR 法線推定 KW:lidar fusion road surface geometry http://openaccess.thecvf.com/content_CVPR_2019/papers/Qiu_DeepLiDAR_Deep_Surface_Normal_Guided_Depth_Prediction_for_Outdoor_Scene_CVPR_2019_paper.pdf
2019 Shanghai Jiao Tong University, Huawei PC-DARTS Partial Channel Connections for Memory-Efficient Differentiable Architecture Search NAS sampling a small part of super-net to reduce the redundancy Fast Houghの詳細が不明、影には強そう 0.1GPU days, 2.57%(CIFAR10) ProxylessNAS(4GPU daysだが精度は最高) https://arxiv.org/pdf/1907.05737.pdf https://github.com/yuhuixu1993/PC-DARTS
2019 Sensor Cortek Inc. How much real data do we actually need: Analyzing object detection performance using synthetic and real data Object Detection driving simulator SSD+MobileNetで、学習画像の何%までシミュレータ画像に置き換えられるか https://arxiv.org/pdf/1907.07061.pdf
2019 Michigan State University M3D-RPN: Monocular 3D Region Proposal Network for Object Detection https://arxiv.org/pdf/1907.06038.pdf http://cvlab.cse.msu.edu/project-m3d-rpn.html.
2018 Target Fusion Detection of LiDAR and Camera Based on the Improved YOLO Algorithm Object Detection YOLO, LiDAR LiDARをデプス画像に変換してearly fusion, 2出力出してまたfusion https://www.mdpi.com/2227-7390/6/10/213/pdf
2019 University of Michigan, Baidu Adversarial Objects Against LiDAR-Based Autonomous Driving Systems Object Detection LiDAR-Adv, adversarial example, Baidu Apollo autonomous driving platform https://arxiv.org/pdf/1907.05418.pdf https://sites.google.com/view/lidar-adv
1999 Universita di Verona A Compact Algorithm for Rectification of Stereo Pairs Rectification stereo rectification MATLAB22行で実装 http://www.diegm.uniud.it/fusiello/papers/mva99.pdf
2019 Google, Baidu EPNAS: Efficient Progressive Neural Architecture Search NAS REINFORCE, performance prediction, scale LSTM+insert LSTM, more efficient than perlayer modification of ENAS DARTSと同速度, FLOPs/byte,MFLOPsで評価 DenseNet, MNASNet https://arxiv.org/pdf/1907.04648.pdf
2019 Tohoku University Joint Learning of Multiple Image Restoration Tasks Image restoration single input and multiple output, attention mechanism, deblur, dehaze SEの変形をattentionと称している https://arxiv.org/pdf/1907.04508.pdf
2019 University of Washington Sparse Networks from Scratch: Faster Training without Losing Performance Model Compression sparse momentum -6.2% w/ 10% weights(ImageNet) https://arxiv.org/pdf/1907.04840.pdf
2017 中央大学 正距円筒画像のステレオ平行化 Stereo Rectification 魚眼ステレオカメラ 対応点探索はテンプレートマッチング(SAD), 内部パラメータはMatlab の OcamCalib Toolboxを利用 http://www.mech.chuo-u.ac.jp/umedalab/publications/pdf/2016/201703_ohashi_DIA.pdf
2008 ETH Zurich Automatic Detection of Checkerboards on Blurred and Distorted Images Camera Calibration Adaptation of Erosion Kernels 魚眼向け、ボケ・歪みにロバストなチェッカーボード検出方法、上記からの引用 Vezhnevets http://rpg.ifi.uzh.ch/docs/IROS08_scaramuzza_b.pdf
2019 Facebook AI Research Panoptic Feature Pyramid Networks Panoptic Segmentation Mask R-CNN, FPN Mask R-CNNの改良 PQ_Th46.8(COCO), 速度不明 DeeplabV3+ https://arxiv.org/pdf/1901.02446.pdf
2019 Uber UPSNet: A Unified Panoptic Segmentation Network Panoptic Segmentation FPN+semantic/instance head+panoptic head, セマセグで路面標示は認識しない, 輪郭がなまっている PQ46.6, 171ms(COCO, GTX 1080 Ti) MR-CNN-PSP, AUNet, Megvii (Face++) https://arxiv.org/pdf/1901.03784.pdf https://github.com/uber-research/UPSNet https://www.slideshare.net/ShunsukeNakamura17/cvpr-2019-report-30-papers/
2019 University of Chinese Academy of Sciences C-MIL Continuation Multiple Instance Learning for Weakly Supervised Object Detection Object Detection Weakly supervised object detection, continuation multiple instance learning (C-MIL) 弱教師あり(クラスのみ)、Lossを段階的に難しく(詳細に)していく mAP53.1(VOC 2007) OICR, MELM https://arxiv.org/pdf/1904.05647.pdf
2019 ETRI An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection Object Detection VoVNet Real Time/Pascal2007でSOTA(Browse state-of-the-art) 16.6FPS, AP38.5 CornerNet https://arxiv.org/pdf/1904.09730v1.pdf https://paperswithcode.com/sota/real-time-object-detection-on-pascal-voc-2007
2019 Amazon Web Services A Unified Optimization Approach for CNN Model Inference on Integrated GPUs Acceleration integrated GPUs at the edge 1.23~39.3x OpenVINO on AWS DeepLens, ACL on Acer aiSage https://arxiv.org/pdf/1907.02154.pdf
2019 Google NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection Object Detection, NAS RNNController +~2% than FPN FPN https://arxiv.org/pdf/1904.07392.pdf https://www.slideshare.net/ShunsukeNakamura17/cvpr-2019-report-30-papers/ https://qiita.com/takoroy/items/b081c7e7fa9fe6b11abd https://www.slideshare.net/DeepLearningJP2016/dlnasfpn-learning-scalable-feature-pyramid-architecture-for-object-detection-145224193
2019 University of Pisa A Survey Of Methods For Explaining Black Box Models Interpretability Single Tree Approximation, Rule Extraction, Agnostic Explanator 解釈系のサーベイなので重要 https://arxiv.org/pdf/1802.01933.pdf
2018 Tsinghua University, SenseTime Quantization Mimic: Towards Very Tiny CNN for Object Detection Model Compression uniform quantization, mimic learning, R-FCN, Faster R-CNN 物体認識が対象なのが珍しい Acc. +1.1%, 604x(size)/10.8x(speed)(VGG, WIDER FACE, medium) https://arxiv.org/pdf/1805.02152.pdf
2019 Google Model Compression by Entropy Penalized Reparameterization Model Compression entropy penalty, scalar quantization, DFT priorに対する向上は小さい Acc. -3.4%, 590x(VGG-16 on CIFAR-10) Minimal Random Code Learning https://arxiv.org/pdf/1906.06624.pdf
2018 University of Cambridge Minimal Random Code Learning: Getting Bits Back from Compressed Model Parameters Model Compression random sample, Kullback-Leibler divergence 上記Googleからの引用 Acc. -0.07%, 159x(VGG-16 on CIFAR-10) Bayesian Compression https://arxiv.org/pdf/1810.00440.pdf https://github.com/cambridge-mlg/miracle (Tensorflow)
2019 Northeastern University AutoSlim: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates Model Compression ADMM-based structured weight pruning Acc. -0%, 9.2x(ResNet-50 using ImageNet) AMC https://arxiv.org/pdf/1907.03141.pdf
2019 University of Bologna Lane Detection and Classification using Cascaded CNNs Lane detection 58.93fps, Accuracy95.24(TuSimple) https://arxiv.org/pdf/1907.01294.pdf https://github.com/fabvio/Cascade-LD
2019 Universidade Federal do Espírito Santo Traffic Light Recognition Using Deep Learning and Prior Maps for Autonomous Cars TLR YOLOv3 ELASのLab.LCAD Precision80.86(DTLD) https://arxiv.org/pdf/1906.11886.pdf https://github.com/LCAD-UFES/carmen_lcad/blob/master/src/traffic_light_yolo/README.md
上へ移動
2019 Cornell University Confidence Calibration for Convolutional Neural Networks Using Structured Dropout Training technique Structured Dropout https://arxiv.org/pdf/1906.09551.pdf
2019 MIT Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning device Placeto, RL, distributed neural network training https://arxiv.org/pdf/1906.08879.pdf
2019 Huazhong University of Science and Technology, Horizon Robotics Densely Connected Search Space for More Flexible Neural Architecture Search NAS differentiable, densely connected search space 3.8GPU days DARTS, ... https://arxiv.org/pdf/1906.09607.pdf
2019 Goodyear Deep Learning in the Automotive Industry:Recent Advances and Application Examples Automotive 車載の概観が有用だが内容が薄め https://arxiv.org/ftp/arxiv/papers/1906/1906.08834.pdf
2019 ?(Tobias Gruber) Pixel-Accurate Depth Evaluation in Realistic Driving Scenarios Depth Benchmark 種々のモダリティ・天候の比較が貴重 車載向け RGB+Lidar 2017Unsupervised monocular depth estimation with left-right consistency https://arxiv.org/pdf/1906.08953.pdf
2019 University of California, San Diego Cascade R-CNN: High Quality Object Detection and Instance Segmentation Object Detection Cascade R-CNN, trained with increasing IoU https://arxiv.org/pdf/1906.09756.pdf https://github.com/zhaoweicai/cascade-rcnn (Caffe) https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron)
2019 Alibaba XNAS: Neural Architecture Search with Expert Advice NAS 0.3GPU days DARTS https://arxiv.org/pdf/1906.08031.pdf
2019 ETH, Google Transfer NAS: Knowledge Transfer between Search Spaces with Transformer Agents NAS Attention-based agent Random Search https://arxiv.org/pdf/1906.08102.pdf
2019 Duke University SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures NAS SwiftNet, GRAph propagation as Meta-knowledge 0.35GPU days DARTS, ... https://arxiv.org/pdf/1906.08305.pdf
2019 A real-time road detection method based on reorganized lidar data Road Boundary Detection LiDAR併用 Fast Houghの詳細が不明、影には強そう , AP:81.98~89.97% https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0215159&type=printable
2019 Deep Learning for Large-Scale Traffic-Sign Detection and Recognition TSR Mask R-CNN(mask使ってないので、ただのROI-AlignつきFasterか)、Detectron利用 , https://arxiv.org/pdf/1904.00649.pdf
2019 Driver Behavior Analysis Using Lane Departure Detection Under Challenging Conditions Lane Detection Mask R-CNN 自車線のfree spaceしか出ない 25fps(752x480), https://arxiv.org/pdf/1906.00093.pdf
2019 Enhanced free space detection in multiple lanes based on single CNN with scene identification Road Boundary Detection CNN(16GMAC) 22.59fps(Titan Xp, VGA), https://arxiv.org/pdf/1905.00941.pdf https://github.com/fabvio/ld-lsi/.
2019 Improving benchmarks for autonomous vehicles testing using synthetically generated images TSR DCGAN , https://arxiv.org/pdf/1904.10261.pdf
2019 Improving Traffic Sign Detection by Combining MSER and Lucas Kanade Tracking TSR 47.95fps, 0.9353 http://www.ijicic.org/ijicic-150216.pdf
2019 Real-Time Embedded Traffic Sign Recognition Using Efficient Convolutional Neural Network TSR Det:EmdNet(6.3M)/cls:ENet(0.9M) 33ms(GTX2080,400x260)/0.62ms(32x32), 98.6% https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8698449
2019 Robust multi-lane detection and tracking using adaptive threshold and lane classification Lane Detection 動画あり、あまり遠くまで検出していないが、安定している , https://link.springer.com/article/10.1007/s00138-018-0977-0
2019 The Right (Angled) Perspective: Improving the Understanding of Road Scenes using Boosted Inverse Perspective Mapping Road Marking Recognition GANを使ったIPM , https://arxiv.org/pdf/1812.00913.pdf
2019 Traffic Light Recognition Using Deep Learning and Prior Maps for Autonomous Cars TLR YOLOv3, uses Darknet-53 47ms(608×608,TITAN), 55.21% of mAP on IARA-TLD https://arxiv.org/pdf/1906.11886.pdf https://github.com/LCAD-UFES/carmen_lcad/blob/master/src/traffic_light_yolo/README.md
2019 Nagoya University Traffic light recognition using high-definition map features TLR SSD(Caffe), ROI(LiDAR前提,高速化の効果は微小) Daytime/Sunsetのみ評価 18ms(980 Ti), https://reader.elsevier.com/reader/sd/pii/S0921889018301234?token=C3AF760DE57F8F007FEF0FFA7CBC4FFE1A6F573B8B3D07991602198878A76F01CBE86023B86697364BF02BA27FD2B110
2019 Traffic Sign Classification Using Computationally Efficient Convolutional Neural Networks TSR CNN 失敗パターンの詳細な分析、MAC評価 , http://www.diva-portal.org/smash/get/diva2:1324051/FULLTEXT01.pdf
2019 National Chung Hsing University Ultra-Low Complexity Block-Based Lane Detection and Departure Warning System Lane Detection 高速、いろいろ有用な概念 4.28ms(FHD), departure warning rate are 96.12% http://www.ee.nchu.edu.tw/Pic/Writings/3985_publish-version.pdf
2019 ? Vehicle Detection and Speed Estimation for Automated Traffic Surveillance Systems at Nighttime Lane Detection,Head Light Detection,Tail Light Detection 単純なrule-based , PSNR https://hrcak.srce.hr/file/316826
2018 Chongqing University A Fast Learning Method for Accurate and Robust Lane Detection Using Two-Stage Feature Extraction with YOLO v3 Road Boundary Detection CNN(YOLOv3) , mAP:88.39% https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308794/pdf/sensors-18-04308.pdf
2018 University Of Waterloo A Hierarchical Deep Architecture and Mini-Batch Selection Method For Joint Traffic Sign and Light Detection TSR,TLR CNN(Faster R-CNN with ResNet-50→crop→分類) 速い分精度が低い SOTAとされている 15ms(1080Ti), Acc:0.68 Boschのベンチでは~150ms https://arxiv.org/pdf/1806.07987.pdf https://paperswithcode.com/task/traffic-sign-recognition/codeless https://github.com/bosch-ros-pkg/bstld
2018 Government Women Residence Polytechnic A review of recent advances in lane detection and departure warning system Road Boundary Detection , https://www.sciencedirect.com/science/article/abs/pii/S0031320317303266
2018 Changchun University of Science and Technology A Robust Lane Detection Method Based on Vanishing Point Estimation Lane Detection,Road Boundary Detection line segment detector (LSD) Houghの計算量の課題への対策 , Correct detection rate:92.34%~ https://ac.els-cdn.com/S1877050918305489/1-s2.0-S1877050918305489-main.pdf?_tid=fc3318c9-ce4d-498f-bd80-49b939d8b568&acdnat=1552210218_7f1ec4dd45fdd6611c3c2ff1aad1ff51
2018 Hosei University A Study on Fast and Robust Vanishing Point Detection System Using Fast M-Estimation Method and Regional Division for In-vehicle Camera M-Estimation 消失点推定のみ、A Robust Lane Detection Method Based on Vanishing Point Estimationと組み合わせられそう , http://www.davidpublisher.org/Public/uploads/Contribute/5a98f6da0975e.pdf
2018 Huazhong University of Science and Technology Cascaded segmentation-detection networks for text-based traffic sign detection TSR テキストベースなので除外 , https://ieeexplore.ieee.org/document/8239744
2018 Beihang University Deep detection network for real-life traffic sign in vehicular networks TSR CNN(Attention Network+Faster-RCNN) , mAP of 80.31% and 94.95% in two benchmarks https://www.sciencedirect.com/science/article/abs/pii/S1389128618300999
2018 Universidad de Sevilla Deep neural network for traffic sign recognition systems: An analysis of spatial transformers and stochastic optimisation methods TSR CNN(simple+spatial transformer modules) , 99.71% https://idus.us.es/xmlui/bitstream/handle/11441/80679/NEUNET-D-17-00381.pdf?sequence=1
2018 FZI Research Center for Information Technology Deep Semantic Lane Segmentation for Mapless Driving Road Boundary Detection CNN Lidar CNN [14]は94.07%, 先行例に大幅に負けているが...、KITTI10位以内 , F1:88.89% https://www.mrt.kit.edu/z/publ/download/2018/Meyer2018SemanticLanes.pdf
2018 UC Berkeley Deep Traffic Light Detection for Self-driving Cars from a Large-scale Dataset TLR SSD Fusion転用にしても後段の演算コスト高くないか? real-timeとだけ記述(288x512にリサイズ,Titan X), https://ywpkwon.github.io/pdf/18itsc.pdf
2018 Ulm University Detecting Traffic Lights by Single Shot Detection TLR SSD データを増やすほど精度が向上した。230K。公開コード 物体が小さいほど context情報が重要 101ms, log-average miss rate<0.02(DriveU) https://arxiv.org/pdf/1805.02523.pdf https://github.com/julimueller/tl_ssd
2018 Efficient Road Lane Marking Detection with Deep Learning Lane Detection 29.1ms(1080), https://arxiv.org/ftp/arxiv/papers/1809/1809.03994.pdf
2018 Efficient Traffic-Sign Recognition with Scale-aware CNN TSR CNN、Pyramid入力→RP:backbone途中から2分岐convx4→cls:Inception Module+FC、Online Hard Example Mining 226ms(RP)+56ms(cls), 99.88% precision https://arxiv.org/pdf/1805.12289.pdf
2018 Universidade Federal do Espエirito Santo Ego-Lane Analysis System (ELAS) Dataset and Algorithms Lane Detection,Road Boundary Detection,Road Marking Recognition 路面標示は32にリサイズしてNCCでテンプレートマッチング , MAEのみ評価
2018 Northwestern Polytechnical University Embedding Structured Contour and Location Prior in Siamesed Fully Convolutional Networks for Road Detection Road Boundary Detection , F1:95.36 https://ieeexplore.ieee.org/document/8058005
2018 Universidad de Sevilla Evaluation of deep neural networks for traffic sign detection systems TSR CNN(Faster,SSD,YOLO) COCOでpre-train/GTSDBでfine-tune , https://www.sciencedirect.com/science/article/pii/S092523121830924X?via%3Dihub https://github.com/aarcosg/traffic-sign-detection
2018 University of Engineering Science Lane Detection Based on Connection of Various Feature Extraction Methods Road Boundary Detection Hough,Canny+Kalman filter , https://www.hindawi.com/journals/am/2018/8320207/
2018 LIDAR-Camera Fusion for Road Detection Using Fully Convolutional Neural Networks Road Boundary Detection LiDAR fusion , https://arxiv.org/pdf/1809.07941.pdf
2018 University of Shanghai Localized Traffic Sign Detection with Multi-scale Deconvolution Networks TSR CNN(Modified Feature Pyramid Network) Chinese Traffic Sign Dataset , <99.1% https://arxiv.org/pdf/1804.10428
2018 Mark Yourself Road Marking Segmentation via Weakly-Supervised Annotations from Multimodal Data Road Marking Recognition CRF 路面標示のセマセグアノテーション生成 , http://www.robots.ox.ac.uk/~mobile/Papers/2018ICRA_bruls.pdf
2018 University of Waterloo MicronNet A Highly Compact Deep Convolutional Neural Network Architecture for Real-time Embedded Traffic Sign Classification TSR CNN(0.51M) 分類のみ、軽量、NAS?、全画像48x48にリサイズしてから評価 32.19ms(Cortex-A53), 98.9% https://arxiv.org/pdf/1804.00497.pdf
2018 Real-Time Detection and Recognition of Road Traffic Signs using MSER and Random Forests TSR SVM→RFで10%程度向上、CNN(上記2016Traffic sign...)と比較してわずかに低い 469ms, 88.83~92.67%
2018 University of Banja Luka Real-time Large Scale Traffic Sign Detection TSR CNN(YOLOv3) , mAP>88% https://ieeexplore.ieee.org/abstract/document/8587013
2018 University of Science and Technology of China Real-Time Traffic Sign Recognition Based on Efficient CNNs in the Wild TSR CNN(Faster-RCNN) , ? https://ieeexplore.ieee.org/abstract/document/8392744
2018 Normandie Univ Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks , https://arxiv.org/pdf/1809.03193.pdf
2018 Hirosaki University Road Boundary Detection using In-vehicle Monocular Camera Road Boundary Detection , https://www.scitepress.org/papers/2018/65897/65897.pdf
2018 Worcester Polytechnic Institute Road Segmentation Using CNN with GRU Road Boundary Detection gated recurrent units 高速だが従来DNNより精度が若干劣る。歩道にFP。2016Exploitingと大差なさそう。 20ms(GTX 950M), F1:86.91 %,AP:81.11%(KITTI40位くらいのレベル) https://arxiv.org/pdf/1804.05164.pdf
2018 Robust Free-Space Detection in Urban Roads based on MSER Extraction Using Gradient Images Road Boundary Detection ピックアップ済み。 18.34s, https://ieeexplore.ieee.org/document/8482557
2018 Kyungpook National University Robust Lane Detection Algorithm Based on Triangular Lane Model Lane Detection 曲線に対応、近・遠分けて推定 記載なし, http://www.pmf.ni.ac.rs/filomat-content/2018/32-5/32-5-15-6663.pdf
2018 Robust Lane Detection for Complicated Road Environment Based on Normal Map Lane Detection,Road Boundary Detection デプス(ステレオ前提)から法線を推定 , https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8456509
2018 Qualcomm Simultaneous traffic sign detection and boundary estimation using convolutional neural network TSR CNN , https://arxiv.org/pdf/1802.10019
2018 The Architectural Implications of Autonomous Driving: Constraints and Acceleration TSR YOLO 車メイン , http://web.eecs.umich.edu/~yunqi/pdf/lin2018autonomous.pdf
2018 Total Recall Understanding Traffic Signs using Deep Hierarchical Convolutional Neural Networks TSR CNN(6.3M) 複雑なskipとdilatedを組み合わせた新しい構造 , 99.33%/99.17% https://arxiv.org/pdf/1808.10524.pdf
2018 ESAT-PSI Towards End-to-End Lane Detection: an Instance Segmentation Approach Lane Detection CNN(seg+fitting), conditional homography using H-Net, Pixel embeddings+Binary lane segmentationの2系統のANDを取りクラスタリング TuSimple Benchmark 3位、実装難しそう、FPあったりカーブが明らかに大外れしてたり気になる点も。 19ms(1080Ti), 96.4%, MSE:5.99[pix] https://arxiv.org/pdf/1802.05591.pdf
2018 Tsinghua University Traffic light recognition for complex scene with fusion detections TLR ACF, fuzzy detection 精度がやたら低いのが気になる。難シーン?bulbと全体を別に検出 81ms(CPU), https://wangxiang10.github.io/papers/ITS18.pdf
2018 Traffic Sign Detection based on Color Segmentation of Obscure Image Candidates: A Comprehensive Study TSR サーベイ , http://www.mecs-press.org/ijmecs/ijmecs-v10-n6/IJMECS-V10-N6-5.pdf
2018 Utrecht University Traffic sign recognition using a multi-task convolutional neural network TSR CNN(Modified Feature Pyramid Network) , http://ir.ia.ac.cn/bitstream/173211/19824/1/TITS-2017-HengliangLuo.pdf
2018 Traffic Signs Recognition and Classification based on Deep Feature Learning TSR ,
2018   Tutorial: Build a lane detector Road Boundary Detection 論文ではない。Hough変換ベースの基本的な手法のPythonコードによる解説。 , https://towardsdatascience.com/tutorial-build-a-lane-detector-679fd8953132
2018 The Hong Kong Polytechnic University Vehicle detection in intelligent transportation systems and its applications under varying environments: A review Tail Light Detection テールランプはほとんど記述なし , https://www.researchgate.net/profile/Zi_Yang12/publication/320370175_Vehicle_Detection_in_Intelligent_Transportation_Systems_and_its_Applications_under_Varying_Environments_A_Review/links/5ad55e75458515c60f546f95/Vehicle-Detection-in-Intelligent-Transportation-Systems-and-its-Applications-under-Varying-Environments-A-Review.pdf
2018 リコー 車載カメラにおける信号機認識および危険運転イベント検知 TLR YUV色特徴 , https://jp.ricoh.com/technology/techreport/43/pdf/RTR43a02.pdf
2017 輝度勾配方向を用いたエッジのクラスタリングによる一般道の白線検出 Lane Detection LSD , https://www.jstage.jst.go.jp/article/transjsme/83/854/83_17-00095/_pdf
2017 Samara National Research University A Method for Traffic Sign Recognition with CNN using GPU TSR full HDで50m先の標識まで認識可能 50fps(64x64), 99.94% http://www.scitepress.org/Papers/2017/64361/64361.pdf
2017 Changsha University of Science and Technology A Real-Time Chinese Traffic Sign Detection Algorithm Based on Modified YOLOv2 TSR det:GHT, cls:CNN , https://www.researchgate.net/publication/321117701_A_Real-Time_Chinese_Traffic_Sign_Detection_Algorithm_Based_on_Modified_YOLOv2
2017 Northwestern Polytechnical University An Incremental Framework for Video-Based Traffic Sign Detection, Tracking, and Recognition TSR , https://crabwq.github.io/pdf/2017%20An%20Incremental%20Framework%20for%20Video-Based%20TrafficSign%20Detection,%20Tracking,%20and%20Recognition.pdf
2017 University of Batna 2 An overview of traffic sign detection and classification methods TSR DL/non DLの一覧がある 以下全てこの引用 , https://link.springer.com/article/10.1007/s13735-017-0129-8
2017 An Overview of Traffic Signs Recognition Methods TSR , https://pdfs.semanticscholar.org/5fd7/eca5432e4e4038dfc2ad425fa5f3e8739f0b.pdf
2017 University of Bedfordshire Car make and model recognition under limited lighting conditions at night Tail Light Detection genetic algorithm 車種分類が主眼 , https://link.springer.com/content/pdf/10.1007%2Fs10044-016-0559-6.pdf
2017 CNN Design for Real-Time Traffic Sign Recognition TSR , https://kundoc.com/pdf-cnn-design-for-real-time-traffic-sign-recognition-.html
2017 Deep learning traffic sign detection, recognition and augmentation TSR , https://www.researchgate.net/publication/317607639_Deep_learning_traffic_sign_detection_recognition_and_augmentation
2017 University of South Carolina Detecting Small Signs from Large Images TSR 標識サイズ分類 , https://www.researchgate.net/publication/317954746_Detecting_Small_Signs_from_Large_Images
2017 Embedding vision-based advanced driver assistance systems a survey Road Boundary Detection,TSR,Tail Light Detection 速度に特化したサーベイ , https://www.researchgate.net/publication/307544971_Embedding_Vision-based_Advanced_Driver_Assistance_Systems_a_Survey
2017 Nehru Institute of Technology Enhanced Technique for Nighttime Vehicle Detection with Multiple Features Tail Light Detection 記載なし, https://www.onlinejournal.in/IJIRV3I1/279.pdf
2017 Inha University Fast Lamp Pairing–based Vehicle Detection Robust to Atypical and Turn Signal Lamps at Night Tail Light Detection ~6ms, 90.9~96.1% http://www.ieiespc.org/include/pdfdownload.asp?filename=IEEKSPC_2017_6_4_20170830143515_1.pdf&xc=318
2017 Zhejiang University of Technology Faster R-CNN for Small Traffic Sign Detection TSR objectサイズのヒストグラム 受容野が適切でないことが精度低下の原因 入力upsamplingでも精度向上 SSDでは収束しないし低精度 , https://link.springer.com/chapter/10.1007/978-981-10-7305-2_14
2017 Hybrid conditional random field based camera-LIDAR fusion for road detection Road Boundary Detection CRF LiDAR fusion , http://www.massey.ac.nz/~rwang/publications/17-IS-Xiao.pdf
2017 Near East University Lane detection by estimating and using restricted search space in Hough domain Road Boundary Detection SymmetricalLocalThreshold (SLT)+polar Hough , https://ac.els-cdn.com/S1877050917324341/1-s2.0-S1877050917324341-main.pdf?_tid=a14bf3de-a5b2-4320-80d9-68c812a1ab44&acdnat=1552210211_a031bbc00c4a5e27ea8f36f02e0f785c
2017 A.I.S.S.M.S. Institute of Information Technology Night-time Vehicle Detection for Automatic Headlight Beam Control Tail Light Detection SVM FPやたら多い , 94.8453608247423 https://pdfs.semanticscholar.org/694b/51965133a7bc3477b6c56e6a8322cff3c9ab.pdf
2017 Vietnam National University Nighttime vehicle detection and classification via headlights trajectories matching Head Light Detection , 81.19% https://ieeexplore.ieee.org/abstract/document/8030869
2017 City University of Hong Kong Nighttime vehicle detection based on bio-inspired image enhancement and weighted score-level feature fusion Tail Light Detection 230ms, 94.6% http://www.ee.cityu.edu.hk/~lhchan/Publications/2017%20IEEE%20TITS%20Kuang.pdf
2017 Partitioning of the Free Space-Time for On-Road Navigation of Autonomous Ground Vehicles Road Boundary Detection , https://hal-mines-paristech.archives-ouvertes.fr/hal-01691793/document
2017 Beijing Institute of Technology Perceptual Generative Adversarial Networks for Small Object Detection TSR GAN, small object 600ms, Det:88%(Tsinghua-Tencent 100K) http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Perceptual_Generative_Adversarial_CVPR_2017_paper.pdf
2017 Real-time traffic sign recognition based on a general purpose GPU and deep-learning TSR ACFと比べ精度格段に向上 , https://www.researchgate.net/publication/314269407_Real-time_traffic_sign_recognition_based_on_a_general_purpose_GPU_and_deep-learning
2017 Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor Lane Detection,Road Boundary Detection ピックアップ済み。手法間のPro/Con表が参考になる。ラインの輪郭を抽出。 24.77ms, Precision:0.78~0.97 https://www.researchgate.net/publication/320724487_Road_Lane_Detection_Robust_to_Shadows_Based_on_a_Fuzzy_System_Using_a_Visible_Light_Camera_Sensor/download
2017 MediaTek Inc. Robust detection and tracking of vehicle taillight signals using frequency domain feature based adaboost learning Turn Light Detection ref.7個、被引用1件、価値低そう , https://ieeexplore.ieee.org/abstract/document/7991176/
2017 KAIST Robust Road Marking Detection and Recognition Using Density-Based Grouping and Machine Learning Techniques Road Marking Recognition PCANet + Logistic Regression 10class 記載なし, 82.1~100% https://www.researchgate.net/profile/Oleksandr_Bailo/publication/312286941_Robust_Road_Marking_Detection_and_Recognition_Using_Density-Based_Grouping_and_Machine_Learning_Techniques/links/59f0228f0f7e9baeb26ad615/Robust-Road-Marking-Detection-and-Recognition-Using-Density-Based-Grouping-and-Machine-Learning-Techniques.pdf
2017 Symbolic Road Marking Recognition Using Convolutional Neural Networks Road Marking Recognition LeNet 10class、14479パッチ出学習、評価がざっくり。 記載なし, 99.05% https://www.cse.unr.edu/~bebis/IV17.pdf
2017 University of Ljubljana Towards large-scale traffic sign detection and recognition TSR CNN(Faster R-CNN) FNの82%は50画素以下 , mAP:All 123 classes 79.41 http://prints.vicos.si/publications/files/351
2017 Traffic Light Recognition Exploiting Map and Localization at Every Stage TLR 矢印もスコープ(ただし韓国の特殊な4連タイプ) , Precision:98.68% https://www.researchgate.net/publication/318385033_Traffic_Light_Recognition_Exploiting_Map_and_Localization_at_Every_Stage
2017 Sun Yat-sen University Turn signal detection during nighttime by CNN detector and perceptual hashing tracking Turn Light Detection , https://ieeexplore.ieee.org/abstract/document/7891988/
2017 Technical University of Cluj-Napoca Vehicle taillight detection and tracking using deep learning and thresholding for candidate generation Tail Light Detection CNN , https://ieeexplore.ieee.org/abstract/document/8117015/
2017 KAIST,Samsung VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition Lane Detection,Road Marking Recognition CNN(8層) 17class分類,Caffe実装公開 ~50ms w/ GTX Titan X, F1:0.743~0.87 Lane detection score:0.5234 2016Traffic-sign detection and classification in the wildより1-2%いい https://arxiv.org/abs/1710.06288 https://github.com/SeokjuLee/VPGNet/blob/master/caffe/matlab/demo/classification_demo.m
2017 奈良先端 ステレオビジョンによる道路領域の推定 Road Boundary Detection , https://library.naist.jp/mylimedio/dllimedio/showpdf2.cgi/DLPDFR013327_P1_50
2016 University Rovira i Virgili A practical approach for detection and classification of traffic signs using Convolutional Neural Networks TSR CNN 37.72fps, 99.89%(detection),99.55%(classification) https://www.sciencedirect.com/science/article/pii/S092188901530316X
2016 National Chiao Tung University An Image Based Overexposed Taillight Detection Method for Frontal Vehicle Detection in Night Vision Tail Light Detection 過剰露出の課題への対策 30fps, 98.6% http://www.apsipa.org/proceedings_2016/HTML/paper2016/63.pdf
2016 Institute for Infocomm Research Agency for Science, Technology and Research (A∗STAR) Appearance-based brake-lights recognition using deep learning and vehicle detection Tail Light Detection 車両認識を同時に行う、LiDAR fusion , https://ieeexplore.ieee.org/abstract/document/7535481
2016 Department of EEE Autonomous Tracking of Vehicle Taillights for Avoiding Accidents in Toll Road Tail Light Detection 引用[8-10,14]が参考になるかも , https://www.ijraset.com/fileserve.php?FID=5009
2016 National Chiao Tung University Daytime preceding vehicle brake light detection using monocular vision Tail Light Detection , https://ieeexplore.ieee.org/abstract/document/7247631/
2016 Efficient Deep Models for Monocular Road Segmentation Road Boundary Detection 解像度・GPU種別処理時間比較あり。定量評価がかなりきっちりしている。 52ms, AP:88.85~92.86%
2016 LG, Korea University Efficient Lane Detection Based on Spatiotemporal Images Lane Detection,Road Boundary Detection ピックアップ済み、自車線のみ、フレアやかすれに強い 117ms, 79.6~96.8% https://ieeexplore.ieee.org/document/7217838
2016 University of S˜ao Paulo Exploiting Fully Convolutional Neural Networks for Fast Road Detection Road Boundary Detection CNN, 学習289枚 KITTIでは2位、圧倒的に速いがVPGNetの50msと大差ない、2015Vision-Based...と全く同著者。歩道にFP。 32.7ms(Titan X), MaxF:90.79(KITTI40位レベル),Acc:93.9% https://www.hds.utc.fr/~vfremont/dokuwiki/_media/en/icra16_1263_fi.pdf
2016 Fast Traffic Sign Recognition Using Color Segmentation and Deep Convolutional Networks TSR CNN, SVM , 89.71%~ http://users.diag.uniroma1.it/bloisi/papers/bloisi-acivs2016-draft.pdf
2016 University of California San Diego Looking at Vehicles in the Night: Detection & Dynamics of Rear Lights Tail Light Detection,Turn Light Detection VeDANt (Vehicle Detection using Active-learning during Nighttime) tracking併用で精度向上 71ms(MATLAB), 92.3~98.5% https://pdfs.semanticscholar.org/c8ac/5e08d8e2dfb66982de431f429b900248a8da.pdf
2016 College of Engineering Sasthamcotta Night Time Vehicle Detection Using Tail Lights: A Survey Tail Light Detection サーベイ、ボリューム少ない , https://pdfs.semanticscholar.org/3697/ea8c1c5bc35b1d4605a8e9ec629ade81eb86.pdf
2016 Inha University Night-time vehicle detection using low exposure video enhancement and lamp detection Tail Light Detection , https://ieeexplore.ieee.org/document/7563005
2016 University of Wollongong Pedestrian lane detection in unstructured scenes for assistive navigation Road Boundary Detection , F-measure:95.3 https://www.sciencedirect.com/science/article/pii/S1077314216000369
2016 Chemnitz University of Technology Road Detection through Supervised Classification Road Boundary Detection binary decision trees+v 他手法との比較はなし , maximum DR of 78% and 19.8% FPR https://arxiv.org/pdf/1605.03150.pdf
2016 Robust lane marking detection using boundary-based inverse perspective mapping Lane Detection 2値化→上下スキャン IPM後に特徴抽出 , https://s3.amazonaws.com/academia.edu.documents/44111093/zqying_icassp2016_paper.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1558237095&Signature=NjAnTSjWNlcW%2Fm0bfInC59IpCXI%3D&response-content-disposition=inline%3B%20filename%3DROBUST_LANE_MARKING_DETECTION_USING_BOUN.pdf
2016 Jilin University Study on leading vehicle detection at night based on multisensor and image enhancement method Tail Light Detection OTSU,D-S evidence theory fusion , http://downloads.hindawi.com/journals/mpe/2016/5810910.pdf
2016 School of Science and Technology, Communication University of China The research on traffic sign recognition based on deep learning TSR DBM+CCA , https://ieeexplore.ieee.org/document/7751612
2016 Software School of Xiamen University Traffic flow detection based on the rear-lamp and virtual coil for nighttime conditions Tail Light Detection , https://ieeexplore.ieee.org/abstract/document/7888317/
2016 Traffic Sign Detection and Recognition using Features Combination and Random Forests TSR , 96.13% https://thesai.org/Downloads/Volume7No1/Paper_93-Traffic_Sign_Detection_and_Recognition.pdf
2016 Traffic sign detection and recognition using fully convolutional network guided proposals TSR , 97.69 http://www.vlrlab.net/admin/uploads/avatars/Traffic_sign_detection_and_recognition_using_fully_convolutional_network_guided_proposals.pdf
2016 Tsinghua University Traffic-sign detection and classification in the wild TSR CNN , https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf
2016 VIT University Vision Based vehicle detection: A literature review Tail Light Detection テールランプはほとんど記述なし , https://pdfs.semanticscholar.org/54d3/3eebacd199a9aca578f6402ddc85bf265a14.pdf
2016 Aalborg Universitet Vision for looking at traffic lights: Issues, survey, and perspectives TLR fuzzy clustering サーベイ , http://vbn.aau.dk/ws/files/224024952/main.pdf
2016 Nanjing University of Science and Technology Vision-based two-step brake detection method for vehicle collision avoidance Tail Light Detection SVM ブレーキ検知 , https://www.sciencedirect.com/science/article/pii/S0925231215012874
2016 Vel Tech University Vision-based Vehicle Detection Survey Tail Light Detection , 記載なし https://online-journals.org/onlinejour/index.php/i-jes/article/download/5590/3830
2015 An Empirical Evaluation of Deep Learning on Highway Driving Lane Detection 44fps(GTX 780Ti), https://arxiv.org/pdf/1504.01716.pdf
2015 A Reliable Method for Detecting Road Regions from a Single Image Based on Color Distribution and Vanishing Point Location Road Boundary Detection 消失点推定、路面のアプリオリ情報が必要 , https://pdf.sciencedirectassets.com/280203/1-s2.0-S1877050915X00202/1-s2.0-S1877050915021134/main.pdf?x-amz-security-token=AgoJb3JpZ2luX2VjEDQaCXVzLWVhc3QtMSJGMEQCIE%2BifPDAGZwVUtkAbXhtS2MzhEBiueXc%2FsOq5eJb1MPMAiBELH6lTT0AkQ4G%2Flb1W8j2akp%2BOQnXKX%2BToXN4ylH3lyraAwg8EAIaDDA1OTAwMzU0Njg2NSIMvWqdcTeKy6R0LrWiKrcD%2Bc5MQb%2FKDrok4FxfAXi2YJDP6iOrxQvHC35GZKEzs1KkMTg0EIc3ssoBvU4QUIPYVdGVAS9OlMQM%2BleBiUEfEaNljg1zDTncI%2F63hG5d3fyT%2FhYag8fQd1c0HLb33uYp%2B4oT5uKmbTHk%2FAsC5uLxY0Uc3kvdToMjVQwVEPhn6OzjBZTczytVcwopLix%2FXCeQt5PDpL8RW3Iteu0Z9mavStxUF6WCJyomUc06C%2F4uQwwmlci81zslg7ZAcqq8BzMqlMwxf16u2uLcSgVoaW96LHhdsjYj8A74Vpd%2F%2B%2Fv7y4ZbSdvfb9U1GU3ZAj%2BllsJEiPi6gdiiMylsWcCPEVHX7PlwSp%2BQj3QG%2FXdJolwkn1crg2CqJArZBodrCwNRTW9DlIpIdDwAGTPRPFk1laxwuhlp6ziLOot2yyVUOo8E%2FwbGDia4sxYHAO1p5t1t1GAlDLElJuFeaZQuvhoGhwyTt2iLDL1vKkbut6%2Fo1QLVfDL1r%2Bj5hD230TVaFhyw0oLeK7EVQRNmPbeKn1nlYYWB54zWUIsek4bQE3JEyJDPK2J1BEC%2F2iEFE3NUDTNRxeJ9N9keFV4ZrDC48v3mBTq1Aai2aiBvaG8c62E2LE399xYSc%2BWPbQDyexylwJ%2F%2FtZDkRcOPjBNQrPbBLN8YGQGU4anUgToVCmr4Wm4QKpxKRLklLcyrWKY0GrRGUrP9SdSfSzKGr0j6T99SkwnsDEvLO%2BkhW6m45zrnD9nwKcF9yrXn8ggdrHUjA%2BruiFetBuhER4lv7xJ1woHnKl1oAPAoNGCCnqRh9POsn5itu5h3rvKnK8L3kKYR6pqVo%2FO4J0ZEjb8d7nQ%3D&AWSAccessKeyId=ASIAQ3PHCVTY7PZPJNF5&Expires=1558154596&Signature=vb%2BTBHTOsNWYDwYW%2B9cEVs0nQKs%3D&hash=c6366454fc7fb2d8a5412105f3a69f69453f22f6811fed7789e10db95e863dc3&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1877050915021134&tid=spdf-d1af04de-2c24-4cca-9578-d7595d4a0901&sid=d83c7e88325cc043bd1a8aa70578201085a9gxrqb&type=client
2015 IIT Guwahati A Robust Lane Detection and Departure Warning System Lane Detection RANSAC, optical flow, GMM 速度で[21]の方が有利に見える→論文見るとカーブが全然だめ(BL) 29ms(SPRAYより速いが精度は劣る、遠距離ほど他手法より有利), 94.25~98.44% https://arxiv.org/pdf/1504.07590.pdf
2015 Universidad de las Palmas de Gran Canaria A Survey on Traffic Light Detection TLR , https://www.researchgate.net/publication/281286347_A_Survey_on_Traffic_Light_Detection
2015 A Survey on Traffic Light Detection TLR , https://www.researchgate.net/publication/281286347_A_Survey_on_Traffic_Light_Detection
2015 Peking University A vision-based hierarchical framework for autonomous front-vehicle taillights detection and signal recognition Turn Light Detection 昼間対応 , https://ieeexplore.ieee.org/abstract/document/7313248
2015 Computer Vision at Intersections Explorations in Driver Assistance Systems and Data Reduction for Naturalistic Driving Studies TLR 2016Vision for looking at...を含む修論 , https://projekter.aau.dk/projekter/files/213565236/main.pdf
2015 Computer Vision at Intersections Explorations in Driver Assistance Systems and Data Reduction for Naturalistic Driving Studies TLR ACF Piotr’s Matlab Toolboxの利用の詳細が記載 , https://projekter.aau.dk/projekter/files/213565236/main.pdf
2015 Fast pixelwise road inference based on Uniformly Reweighted Belief Propagation Road Boundary Detection PGM-ARS KITTIでは62位、SPRAYと同等、影のFN、車のFPが問題 <50ms(i7-4700MQ), MaxF:85.52%(SPRAYは86.33%) http://www.robesafe.com/personal/bergasa/papers/MarioPassani_IV2015.pdf
2015 Fast Symbolic Road Marking and Stop-line Detection for Vehicle Localization Road Marking Recognition total error rate (TER)-based classifier, HOG ダントツで高速、多クラス、 4.5ms, 99.2% http://web.yonsei.ac.kr/hgjung/Ho%20Gi%20Jung%20Homepage/Publications/2015/IVS2015(Fast%20Symbolic%20Road%20Marking%20and%20Stop-line%20Detection%20for%20Vehicle%20Localization).pdf
2015 FPGA Based Traffic Sign Detection for Automotive Camera Systems TSR 下記サーベイで引用 60fps@full HD, http://radio-project.eu/downloads/publications/schwiegelshohn_etal-2015.pdf
2015 Shandong University Nighttime Vehicle Detection for Heavy Trucks Tail Light Detection AdaBoost,Improved Threshold , 89.4% https://www.researchgate.net/profile/Hui_Chen56/publication/288128551_Nighttime_Vehicle_Detection_for_Heavy_Trucks/links/567e606608aebccc4e055156/Nighttime-Vehicle-Detection-for-Heavy-Trucks.pdf
2015 Parul Institute of Engineering and Technology Nighttime vehicle Tail light detection in low light video frames using Matlab Tail Light Detection 60.64~88.29%, https://www.ijraset.com/fileserve.php?FID=2307
2015 Aalborg University Ongoing Work on Traffic Lights TLR , http://vbn.aau.dk/files/217928577/mainAVSS.pdf
2015 University of Oxford Reading the Road: Road Marking Classification and Interpretation Road Marking Recognition CRF, Delaunay triangulation , 73.6~93.2% http://www.robots.ox.ac.uk/~mobile/Papers/road-marking-classification-paul-ingmar.pdf
2015 Real-time illumination invariant lane detection for lane departure warning system Lane Detection 適応ROI ラインの色の考察 , http://diml.yonsei.ac.kr/papers/Real-time%20Illumination%20Invariant%20Lane%20Detection%20%20for%20Lane%20Departure%20Warning%20System.pdf
2015 Universitat Munchen Real-time lane detection and tracking on high performance computing devices Road Boundary Detection 画像を見ると精度はいまいち , http://www.i6.in.tum.de/pub/Main/Hub/detection.pdf
2015 University of Kerala Kariavattom Review of lane detection and tracking algorithms in advanced driver assistance system Road Boundary Detection サーベイ , https://s3.amazonaws.com/academia.edu.documents/38630775/7415ijcsit06.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1553137239&Signature=BlYCfvTmsHKj%2FugRUNXKAOKEFiQ%3D&response-content-disposition=inline%3B%20filename%3DREVIEW_OF_LANE_DETECTION_AND_TRACKING_AL.pdf
2015 Prescott College of Engineering Robust and computationally lightweight autonomous tracking of vehicle taillights and signal detection by embedded smart cameras Head Light Detection,Turn Light Detection ヘッドライト拡張可 No.70と同著者同内容 123ms/台,>300ms @ 624MHzMPU, https://ieeexplore.ieee.org/abstract/document/7031905/
2015 Robust and computationally lightweight autonomous tracking of vehicle taillights and signal detection by embedded smart cameras Tail Light Detection,Turn Light Detection ルールベース,LKF 同著者、ヘッドライト、昼夜可 , B:74.4~98.6%,T:68.4~100%,H:91.9% https://ieeexplore.ieee.org/abstract/document/7031905/
2015 Beijing Jiaotong University Robust nighttime vehicle detection by tracking and grouping headlights Head Light Detection , Tracking:86.4% https://slideplayer.com/slide/9261334/
2015 Universidad de las Palmas de Gran Canaria, Robust real-time traffic light detection and distance estimation using a single camera TLR 2016Vision for looking at traffic lights: Issues, survey, and perspectivesでトップ , 99.4% https://www.researchgate.net/publication/272240041_Robust_real-time_traffic_light_detection_and_distance_estimation_using_a_single_camera
2015 Lee-Ming Institute of Tech. Robust rear light status recognition using symmetrical surfs Tail Light Detection , https://ieeexplore.ieee.org/abstract/document/7313424/
2015 Islamic Azad University Robust Vehicle Detection and Distance Estimation Under Challenging Lighting Conditions Tail Light Detection 単眼測距、上記引用、混雑条件、距離依存への対策、昼夜兼用 25-28fps(CPU), Prec:95.1% https://ieeexplore.ieee.org/document/7101268
2015 Aalborg University Traffic Light Detection: A Learning Algorithm and Evaluations on Challenging Dataset TLR , http://vbn.aau.dk/ws/files/234499286/mainITSC.pdf
2015 Universiti Teknologi Petronas Vehicle Detection Techniques for Collision Avoidance Systems: A Review Tail Light Detection サーベイ、2011A Real-Time Visionを引用 , https://www.researchgate.net/profile/Amir_Mukhtar2/publication/277574813_Vehicle_Detection_Techniques_for_Collision_Avoidance_Systems_A_Review/links/56776f5d08ae125516ec0dbc/Vehicle-Detection-Techniques-for-Collision-Avoidance-Systems-A-Review.pdf
2015 Information College of Beijing Union University Vision-Based Method for Forward Vehicle Brake Lights Recognition Tail Light Detection 雨天、昼間の過酷条件で評価 , 80.01~85.62%,赤い車だと50.31~55.25% https://www.researchgate.net/publication/286523979_Vision-Based_Method_for_Forward_Vehicle_Brake_Lights_Recognition
2015 University of S˜ao Paulo Vision-Based Road Detection using Contextual Blocks Road Boundary Detection KITTIのnon-DL/LiDARでHIMに次ぐ(46位) 2s, AP:75.21%~ https://arxiv.org/pdf/1509.01122.pdf
2014 University Hadj Lakhdar A Fast and Robust Traffic Sign Recognition TSR 検出限定で最速、他の対象に応用できないか? 検出のみ<1ms(360x270), 95.65%(detection) https://pdfs.semanticscholar.org/f689/534a9d6af365e7628a66bd91c7658d02b932.pdf
2014 University of Zagreb A Method for On-road Night-time Vehicle Headlight Detection and Tracking Head Light Detection,Tail Light Detection JPDAF 距離・速度推定 , Tracking:87/92% https://bib.irb.hr/datoteka/741339.A_Method_for_On-road_Night-time_Vehicle_Headlight_Detection_and_Tracking.pdf
2014 University of Bedfordshire An algorithm for accurate taillight detection at night Tail Light Detection Rule-based(color filtering→pairing→symmetry check) 854ms, 95.37% http://uobrep.openrepository.com/uobrep/bitstream/10547/333824/2/taillight.pdf
2014 University "Parthenope" Naples An automated nighttime vehicle counting and detection system for traffic surveillance Head Light Detection adaptive threshold, contour detection バイクも検出可能 real time(320x180), Precision:98.71% https://www.researchgate.net/profile/Giuseppe_Salvi/publication/265172351_An_Automated_Nighttime_Vehicle_Counting_and_Detection_System_for_Traffic_Surveillance/links/55af466308aed614b09a8627/An-Automated-Nighttime-Vehicle-Counting-and-Detection-System-for-Traffic-Surveillance.pdf
2014 Norwich University Autonomous tracking of vehicle taillights and alert signal detection by embedded smart cameras Turn Light Detection 2015Robust and computationally ...と同著者、昼夜兼用がポイント、疑似コードあり 115~758ms(MATLAB), 90.3~98.6%(昼、多車線の方が不利) https://www.researchgate.net/profile/Emmanuel_Tonye/publication/272161147_A_Parallel_Approach_for_Statistical_Texture_Parameter_Calculation/links/54dc6d2c0cf2a7769d961a5a.pdf#page=131
2014 DENSO Car detection at night using latent filters Tail Light Detection 117ms(VGA), https://www.researchgate.net/profile/Hossein_Tehrani3/publication/269293903_Car_detection_at_night_using_latent_filters/links/5704703b08ae74a08e24644c.pdf
2014 Universit´e de Technologie de Compi`egne Comprehensive performance analysis of road detection algorithms using the common urban Kitti-road benchmark Road Boundary Detection HistonBoost(multi-normalized-histogram joint boosting[21]),ANN ベンチマーキング、定量評価手法 , https://hal.archives-ouvertes.fr/hal-01089094/document
2014 Detection and Recognition of Road Traffic Signs in Various Illumination and Weather Conditions TSR , 89.47 https://www.ijert.org/research/detection-and-recognition-of-road-traffic-signs-in-various-illumination-and-weather-conditions-IJERTV3IS071337.pdf
2014 Bielefeld University Monocular Road Terrain Detection by Combining Visual and Spatial Information Road Boundary Detection SPRAY ノイジーでFPが多い ~45ms(GTX 580), AP:95.6(road area), 85.2(ego-lane) https://www.honda-ri.de/pubs/pdf/1931.pdf
2014 Jilin University Multifeature Fusion Vehicle Detection Algorithm Based on Choquet Integral Tail Light Detection 車両検出なので除外 50ms(896 × 592), https://www.hindawi.com/journals/jam/2014/701058/
2014 Amrita School of Engineering Night Time Vehicle Detection for Real Time Traffic Monitoring Systems A Review Tail Light Detection Rule Based/Symmetry Based/SVM/Hypothesis Generationを比較 , Rule Basedが98%でベスト https://pdfs.semanticscholar.org/8724/baf615c79a1ee5b9dbd1c2ee9d1b3a16b46f.pdf
2014 Yuan Ze University Nighttime turn signal detection by scatter modeling and reflectance-based direction recognition Turn Light Detection Nakagami imagingで不変量抽出, AdaBoost 遠い方が検出率が高い , 76~87% http://mmplab.cs.ntou.edu.tw/Publication/Paper_File/A_National_Journal/2014/Nighttime%20Turn%20Signal%20Detection%20by%20Scatter%20Modeling%20and%20Reflectance-based%20Direction%20Recognition.pdf
2014 University of California San Diego On Performance Evaluation Metrics for Lane Estimation Road Boundary Detection ELAS論文の引用 , http://cvrr.ucsd.edu/publications/2014/SatzodaTrivedi_ICPR2014.pdf
2014 University of Zagreb On-road Night-time Vehicle Light Detection and Tracking Methods Overview Head Light Detection,Tail Light Detection , 距離との関係まで言及(Headlights are detected at distances between 300 and 500 m and tail-lights at distances between 30 - 50 m...) 300m以内のHL,30-50mのTLで100% https://pdfs.semanticscholar.org/d5cb/d2a163cabcb2e3b62b440ea639f01ab50eb7.pdf
2014 Xi'an Institute of High-Tech Preceding vehicle detection and tracking adaptive to illumination variation in night traffic scenes based on relevance analysis Tail Light Detection 14ms(768 × 576), 67~98.8% https://www.mdpi.com/1424-8220/14/8/15325/pdf
2014 California Institute of Technology Real time Detection of Lane Markers in Urban Streets Road Marking Recognition 車線のみ。データセットスクリプト公開。 , https://arxiv.org/pdf/1411.7113.pdf http://www.mohamedaly.info/software/caltech-lane-detection
2014 Worcester Polytechnic Institute Real-Time Traffic Sign Detection and Recognition Using GPU TSR HOG+SVM window size of 32 by 32 Tesla K20で13~17 ms , http://www.ieee-hpec.org/2014/CD/index_htm_files/FinalPapers/109.pdf
2014 Institute of Automation, Chinese Academy of Sciences Rear-View Vehicle Detection and Tracking by Combining Multiple Parts for Complex Urban Surveillance Tail Light Detection 最速、License plateも同時、定量評価が充実、天候によりる精度の変化も明確 25ms(1920*1072以上), Recall:90.3~99.1%(daytimeのprecisionは73.5%まで下がる) http://ir.ia.ac.cn/bitstream/173211/3639/1/Rear-View%20Vehicle%20Detection%20and%20Tracking%20by%20Combining%20Multiple%20Parts%20for%20Complex%20Urban%20Surveillance.pdf
2014 General Motors Recent Progress in Road and Lane Detection - A survey Road Boundary Detection , http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.233.1475&rep=rep1&type=pdf
2014 Robust Lane Detection in Shadows and Low Illumination Conditions using Local Gradient Features Lane Detection , 95.54% https://pdfs.semanticscholar.org/1b0d/6986045c69b69c86cf2fbefe5ea60da29aff.pdf
2014 Yuan Ze University Robust nighttime turn signal direction recognition Turn Light Detection 2014Nighttime turn signal...と同内容ぽい , >80% https://ieeexplore.ieee.org/iel7/6894724/6903991/06904059.pdf
2014 Robust real-time traffic light detection and distance estimation using a single camera TLR 疑似コードあり、参考になるノウハウも多そう , https://www.researchgate.net/publication/272240041_Robust_real-time_traffic_light_detection_and_distance_estimation_using_a_single_camera
2014 Mokpo National University State Machine and Downhill Simplex Approach for Vision-Based Nighttime Vehicle Detection Head Light Detection , 94.2% https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.14.0113.0509
2014 National Central University(Taiwan) Vehicle color classification using manifold learning methods from urban surveillance videos NFL (20) + SVM (RBF-kernel function) 昼間 18ms, 88.18 (±0.89) https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/1687-5281-2014-48
2014 University of California San Diego Vision-based Lane Analysis Exploration of Issues and Approaches for Embedded Realization Lane Detection LASeR 上記手法の計算量解析 記載なし, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.1011&rep=rep1&type=pdf
2014 Fraunhofer Institute Vision-Based Robust Road Lane Detection in Urban Environments Lane Detection,Road Boundary Detection 影が除去できる。車線検出は曲線対応で遠方まで可能。逆光の照り返しで失敗。 , F:93.33% https://www.researchgate.net/profile/Michael_Beyeler2/publication/269519254_Vision-based_robust_road_lane_detection_in_urban_environments/links/552bfc2e0cf21acb091f4263.pdf
2014 Daimler Will this car change the lane?-turn signal recognition in the frequency domain Turn Light Detection , https://ieeexplore.ieee.org/abstract/document/6856477/
2013 Honda Research Institute Europe A new performance measure and evaluation benchmark for road detection algorithms Road Boundary Detection SPRAY,CNN SPRAY論文の著者による定量評価方法提案(pixel-based/behavior-based)。2015A Robust Lane Detection...でベンチマーク。BaseLineは近距離だけなら速度で圧倒的有利だが、アルゴリズムの詳細がない。 20ms(1core,Python), http://www.cvlibs.net/publications/Fritsch2013ITSC.pdf
2013 Tsinghua University A Region Tracking-Based Vehicle Detection Algorithm in Nighttime Traffic Scenes Tail Light Detection 142ms(MATLAB), 97.472%,93.45~100% https://www.mdpi.com/1424-8220/13/12/16474/pdf
2013 A Sensor-Fusion Drivable-Region and Lane-Detection System for Autonomous Vehicle Navigation in Challenging Road Scenarios Lane Detection LiDAR , >91.2% https://www.researchgate.net/profile/Andreas_Nuchter/publication/260522418_A_Sensor-Fusion_Drivable-Region_and_Lane-Detection_System_for_Autonomous_Vehicle_Navigation_in_Challenging_Road_Scenarios/links/5890ba0b92851cda25689d4c/A-Sensor-Fusion-Drivable-Region-and-Lane-Detection-System-for-Autonomous-Vehicle-Navigation-in-Challenging-Road-Scenarios.pdf
2013 University of Bochum Detection of Traffic Signs in Real-World Images The German Traffic Sign Detection Benchmark TSR detectionではViola-Jonesがベスト , ~100% https://www.researchgate.net/publication/242346625_Detection_of_Traffic_Signs_in_Real-World_Images_The_German_Traffic_Sign_Detection_Benchmark
2013 Hanyang University Enhancing Light Blob Detection for Intelligent Headlight Control Using Lane Detection Head Light Detection 低露出+自動露出(車線検出・tailの遠距離用), fixed threshold ROC curves, 画像の定性評価あり , ROC曲線のみ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.310.867&rep=rep1&type=pdf
2013 Uludag University Keeping the Vehicle on the Road – A Survey on On-Road Lane Detection Systems Road Boundary Detection 2000年代の論文の比較 , http://romisatriawahono.net/lecture/rm/survey/computer%20vision/Yenikaya%20-%20Keeping%20the%20Vehicle%20on%20the%20Road%20-%202013.pdf
2013 Hunan University Lane Detection Algorithm based on Local Feature Extraction Lane Detection Median Local Threshold Rainyの方が精度が高い <200ms(MATLAB,256 × 240), 87.36~98.67% https://www.researchgate.net/profile/Shutao_Li/publication/271469116_Lane_detection_algorithm_based_on_local_feature_extraction/links/5639a7c808aecf1d92a9c817.pdf
2013 University of California, San Diego Looking at Vehicles on the Road: A Survey of Vision-Based Vehicle Detection, Tracking, and Behavior Analysis Tail Light Detection 車両検出・追尾・挙動解析のサーベイ , http://swiftlet.ucsd.edu/publications/2013/SayananTrivedi_IEEETITS2013_VehicleSurvey.pdf
2013   Night Time Car Recognition Using MATLAB Tail Light Detection , http://www.cipa.dcu.ie/papers/eProject_Hazim%20Hamza_2013.pdf
2013 Night-Time Traffic Light Detection Based On SVM with Geometric Moment Features TLR SVM , https://waset.org/publications/8944/night-time-traffic-light-detection-based-on-svm-with-geometric-moment-features
2013 Xi’an Technology University Nighttime vehicle detection algorithm based on brightness cumulative histogram Tail Light Detection , http://en.cnki.com.cn/Article_en/CJFDTotal-JSJC201306055.htm
2013 Real-time detection and classification of road lane Lane Detection,Road Boundary Detection ラインの分類可能。 25ms @VGA, 71.53~99.32% https://www.researchgate.net/publication/261022358_Real-Time_Detection_and_Classification_of_Road_Lane_Markings/download
2013 University of California, San Diego Selective Salient Feature based Lane Analysis Lane Detection LASeR On Performance Evaluation...で引用 記載なし, 90-95%, <8cm(自車位置) http://swiftlet.ucsd.edu/publications/2013/SatzodaLASER13.pdf
2013 University of California, San Diego Towards Automated Drive Analysis: A Multimodal Synergistic Approach Lane Detection Selective Salient...の評価方法の引用 , http://cvrr.ucsd.edu/publications/2013/SatzodaDriveAnalysis13.pdf
2013 Universitas Indonesia Vehicle counting and speed measurement using headlight detection Head Light Detection 定点監視、速度推定 , https://www.researchgate.net/profile/Adi_Nurhadiyatna/publication/271548723_Vehicle_counting_and_speed_measurement_using_headlight_detection/links/55273ab40cf229e6d63613e1.pdf
2013 Chinese Academy of Sciences Vehicle detection based on the and–or graph for congested traffic conditions Tail Light Detection and -or graph (AOG) occlusion,時刻、天候の変動に強い , https://ieeexplore.ieee.org/abstract/document/6480875/
2013 Versatile lane departure warning using 3D visual geometry Lane Detection lateral inhibition property , http://www.ijicic.org/ijicic-12-02077.pdf
2012 Jawaharlal Nehru Technological University(India) A computer vision model for vehicle detection in traffic surveillance Head Light Detection , 87.666~95.937% http://www.ijesat.org/Volumes/2012_Vol_02_Iss_05/IJESAT_2012_02_05_05.pdf
2012 Tsinghua University A Global and Local Condensation for Lane Tracking Lane Detection particle filter(particle数5000) ライントラッキング、ピッチ変化考慮でIPM精度向上 , https://www.researchgate.net/profile/Zhidong_Deng/publication/261202026_A_global_and_local_condensation_for_lane_tracking/links/58e45c0d4585159f7a777d5b/A-global-and-local-condensation-for-lane-tracking.pdf
2012 Tianjin Polytechnic University A Night Time Application for a Real-Time Vehicle Detection Algorithm Based on Computer Vision Head Light Detection Rule-based 64fps(720×576), 97.93% https://pdfs.semanticscholar.org/0c1e/f97a45ae19066755b20d9c39f3c10337af28.pdf
2012 Syracuse University A robust algorithm for the detection of vehicle turn signals and brake lights Tail Light Detection,Turn Light Detection , https://ieeexplore.ieee.org/abstract/document/6328045/
2012 A robust algorithm for the detection of vehicle turn signals and brake lights Tail Light Detection,Turn Light Detection , https://ieeexplore.ieee.org/abstract/document/6328045/
2012 Syracuse University Autonomous tracking of vehicle rear lights and detection of brakes and turn signals Tail Light Detection,Turn Light Detection 上と同著者 , https://ieeexplore.ieee.org/document/6291543
2012 Clemson University Brake lamp detection in complex and dynamic environments: Recognizing limitations of visual attention and perception Tail Light Detection シミュレータで実験 , http://andrewd.ces.clemson.edu/research/vislab/docs/AAP45(2012).pdf
2012 Yuan Ze University Frequency-tuned taillight-based nighttime vehicle braking warning system Tail Light Detection 上記引用、Nakagami imagingを使った論文を複数書いている著者 , https://ieeexplore.ieee.org/document/6265338
2012 Ruhr-Universität Bochum Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition TSR ,
2012 TEI, RAJWADA Night Time Vehicle Detection and Classification Using Support Vector Machine Head Light Detection,Tail Light Detection SVM 15~30fps, https://pdfs.semanticscholar.org/ac25/b7c5e7cd65f785c2e2e20ed881850253125f.pdf
2012 Hunan University Night-time vehicle detection using DS evidence theory Tail Light Detection TEI, RAJWADA , http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSYJ201205092.htm
2012 Yuan Ze University Nighttime brake-light detection by Nakagami imaging Tail Light Detection , https://ieeexplore.ieee.org/abstract/document/6210387/
2012 Chaoyang University of Technology PSO algorithm particle filters for improving the performance of lane detection and tracking systems in difficult roads Lane Detection , 記載なし https://www.mdpi.com/1424-8220/12/12/17168/pdf
2012 Real-Time Detection and Recognition of Road Traffic Signs TSR , http://www.cs.sjtu.edu.cn/~shengbin/course/SE/Real-Time%20Detection%20and%20Recognition%20of%20road%20traffic%20signs.pdf
2012 Chinese Academy of Sciences Rear lamp based vehicle detection and tracking for complex traffic conditions Tail Light Detection MSER ノイズにロバスト , https://ieeexplore.ieee.org/abstract/document/6204950/
2012 University of Patras Rear lights vehicle detection for collision avoidance Tail Light Detection Otsuの閾値処理→pairing→エッジ検出→対称性チェック 車幅から距離推定 , 92.6% https://www.researchgate.net/profile/George_Siogkas/publication/230601632_Rear_Lights_Vehicle_Detection_for_Collision_Avoidance/links/004635318f8c882741000000/Rear-Lights-Vehicle-Detection-for-Collision-Avoidance.pdf
2012 General Motors Recent progress in road and lane detection: a survey Road Boundary Detection サーベイ、文章のみで辛い , https://sites.google.com/site/danmlevi/LaneRoadSurvey_final.pdf
2012 Yuan-Ze University Salient video cube guided nighttime vehicle braking event detection Tail Light Detection , https://www.sciencedirect.com/science/article/pii/S1047320312000260
2012 Bielefeld University Spatial Ray Features for Real-Time Ego-Lane Extraction Road Boundary Detection , http://www.cvlibs.net/projects/autonomous_vision_survey/literature/Kuehnl2012IV.pdf
2012 Huazhong University of Science and Technology Tracking and Pairing Vehicle Headlight in Night Scenes Head Light Detection ROC評価あり。bounding boxは出さない。 , Tracking:88.2/95.2% http://www.cvsslab.com/publication/67.pdf
2012 Traffic sign detection using computer vision Explorations for a driver support system TSR , https://www.academia.edu/9716924/Traffic_sign_detection_using_computer_vision_Explorations_for_a_driver_support_system?auto=download
2012 North China University of Technology Vehicle Detection and Tracking at Night in Video Surveillance Tail Light Detection 車両BBを出力 , 97.07% https://online-journals.org/index.php/i-joe/article/viewFile/2828/2683
2012 Chengdu University of Information and Technology Vehicle detection based on two-way multilane at night Tail Light Detection , http://en.cnki.com.cn/Article_en/CJFDTOTAL-TXJS201210020.htm
2012 Future University Hakodate Vehicles detection based on extremas in nighttime driving scene Head Light Detection,Tail Light Detection ヘッドライト兼用(入力がgray/red画像かの違い) , https://ieeexplore.ieee.org/abstract/document/6379950/
2012 Aalborg University Vision-Based Traffic Sign Detection and Analysis for Intelligent Driver Assistance Systems: Perspectives and Survey TSR サーベイ , http://vbn.aau.dk/files/72574480/survey.pdf
2012 Yuan Ze University Visual-Based Spatiotemporal Analysis for Nighttime Vehicle Braking Event Detection Tail Light Detection 時系列からブレーキ検知 , https://link.springer.com/chapter/10.1007/978-3-642-27355-1_81
2011 National Taipei University of Technology A Real-Time Vision System for Nighttime Vehicle Detection and Traffic Surveillance Head Light Detection,Tail Light Detection segmentation tail lampも対象、バイクも検出可能,比較している他手法との違いが歴然 12ms, 96.3~97.9% https://ir.nctu.edu.tw/bitstream/11536/8964/1/000289478000054.pdf
2011 National Central University(Taiwan) A vision-based system for the prevention of car collisions at night Tail Light Detection 3層3neuronFCのNN 幾何的heuristicの詳細な説明、距離推定 32ms(720x480), 74.2~98.3% https://www.researchgate.net/profile/Ming-Chih_Lu/publication/220465050_A_vision-based_system_for_the_prevention_of_car_collisions_at_night/links/0c96051ae9e1891e9c000000.pdf
2011 Industrial Technology Research Institute(Taiwan) Adaptive IPM-based lane filtering for night forward vehicle detection Tail Light Detection , https://ieeexplore.ieee.org/abstract/document/5975840/
2011 University of Alcal´a Automatic LightBeam Controller for driver assistance Tail Light Detection 2014On-road Night-time...の[4], BB出力, 距離推定, High/Low beam推定 ~20fps, 1 https://www.researchgate.net/publication/225715555_Automatic_LightBeam_Controller_for_driver_assistance
2011 North Carolina State University Detection of multiple preceding cars in busy traffic using taillights Tail Light Detection 昼夜兼用 , https://link.springer.com/chapter/10.1007/978-3-642-21596-4_34
2011 Effective Traffic Lights Recognition Method for Real Time Driving Assistance System in the Daytime TLR , https://waset.org/publications/725/effective-traffic-lights-recognition-method-for-real-time-driving-assistance-systemin-the-daytime
2011 名大村瀬研 Intelligent Traffic Sign Detector Adaptive Learning Based on Online Gathering of Training Samples TSR Real AdaBoost、Mean shift clustering、オンライン学習 , http://bird1.murase.m.is.nagoya-u.ac.jp/~ide/res/paper/E11-conference-ddeguchi-1pub.pdf
2011 Georgia Institute of Technology Multi-viewpoint lane detection with applications in driver safety systems Lane Detection ラインの定量評価方法 , https://smartech.gatech.edu/bitstream/handle/1853/43752/borkar_amol_a_201205_phd.pdf
2011 Universitat Autònoma de Barcelona Multiple-Target Tracking for Intelligent Headlights Control Tail Light Detection BELIEF PROPAGATION pptあり , Split and Mergeが52.8% http://www.cvc.uab.es/~joans/journals/12%20ITS%20Multiple%20target%20tracking%20for%20intelligent%20headlights%20control.pdf
2011 EPFL Real-time vehicle tracking for driving assistance Tail Light Detection HSVでのHeadlight,Taillight,Blinkerの分離 39~46fps(720 × 576), 94.4~98.2% http://doc.rero.ch/record/321782/files/138_2009_Article_243.pdf
2011 Universitat Autònoma de Barcelona Road Detection Based on Illuminant Invariance Lane Detection,Road Boundary Detection 影対策に有用、上記引用 , https://www.researchgate.net/publication/220108942_Road_Detection_Based_on_Illuminant_Invariance
2011 Road sign detection and recognition system for real-time embedded applications TSR 昼夜比較 , 夜は-40% https://www.researchgate.net/publication/224247496_Road_sign_detection_and_recognition_system_for_real-time_embedded_applications
2011 Shanghai Jiao Tong University Robust and real-time traffic lights recognition in complex urban environments TLR 40ms, 96.7% https://download.atlantis-press.com/article/2436.pdf
2011 Ruhr-Universität Bochum The German Traffic Sign Recognition Benchmark: A multi-class classification competition. TSR ,
2011 Linköping University Using Fourier Descriptors and Spatial Models for Traffic Sign Recognition TSR , https://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/SCIA2011_poster.pdf
2011 University of Missouri-Columbia Vehicle detection algorithm based on light pairing and tracking at nighttime Head Light Detection , 88.2~98.8% https://www.researchgate.net/profile/Weibing_Wan/publication/258496559_Vehicle_detection_algorithm_based_on_light_pairing_and_tracking_at_nighttime/links/573ae62c08ae9ace840e68cc/Vehicle-detection-algorithm-based-on-light-pairing-and-tracking-at-nighttime.pdf
2011 National University of Ireland Vision-based detection and tracking of vehicles to the rear with perspective correction in low-light conditions Tail Light Detection , https://digital-library.theiet.org/content/journals/10.1049/iet-its.2010.0032
2011 Toyota Technological Institut Vision-Based Vehicle Detection for Nighttime with Discriminately Trained Mixture of Weighted Deformable Part Models Tail Light Detection , 78.93% https://www.researchgate.net/profile/Hossein_Tehrani3/publication/261151134_Vision-based_vehicle_detection_for_nighttime_with_discriminately_trained_mixture_of_weighted_deformable_part_models/links/57049ece08ae13eb88b68fbe.pdf
2010 An Adaptive Method for Lane Marking Detection Based on HSI Color Model Lane Detection , https://www.researchgate.net/profile/Trung-Thien_Tran/publication/220777443_An_Adaptive_Method_for_Lane_Marking_Detection_Based_on_HSI_Color_Model/links/00b7d51b916b80319f000000.pdf
2010 National University of Ireland Distance Determination for an Automobile Environment using Inverse Perspective Mapping in OpenCV IPMに基づく距離推定 , https://s3.amazonaws.com/academia.edu.documents/29591239/docualain_issc10.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1553259605&Signature=HI%2BsbMKexJyAjN38MUUYaOuSoY8%3D&response-content-disposition=inline%3B%20filename%3DDistance_determination_using_inverse_per.pdf
2010 INRIA General road detection from a single image Road Boundary Detection ライン・舗装なし対応。 17fps(240x180), https://www.di.ens.fr/sierra/pdfs/tip10b.pdf
2010 Bosch On-road vehicle detection during dusk and at night Head Light Detection State Machine...の[21] , https://ieeexplore.ieee.org/document/5548013
2010 University of Zagreb Real-time Detection and Recognition of Traffic Signs TSR 24x24より小さいと検出に失敗 , https://www.researchgate.net/publication/224162933_Real-time_detection_and_recognition_of_traffic_signs
2010 EPFL Real-Time Vehicle Tracking for Driving Assistance Tail Light Detection 6の[102]、距離推定 , 5.6% miss https://infoscience.epfl.ch/record/149699/files/FossatiSF10.pdf
2010 National University of Ireland Rear-lamp vehicle detection and tracking in low-exposure color video for night conditions Tail Light Detection color cross-correlation symmetry analysis, Kalman filtering trackingを援用 , https://ieeexplore.ieee.org/abstract/document/5446402/
2010 National University of Ireland Rear-Lamp Vehicle Detection and Tracking in Low-Exposure Color Video for Night Conditions Tail Light Detection 6の[103]、HSVでTL識別 , https://ieeexplore.ieee.org/document/5446402
2010 Robust lane markings detection and road geometry computation Lane Detection,Road Marking Recognition 解析的モデル、RANSAC , http://refbase.cvc.uab.es/files/LSC2010.pdf
2010 Carnegie Mellon University Stacked Hierarchical Labeling Road Boundary Detection KITTIのnon-DL/LiDARでtop(42位) 7s(>8core), https://www.ri.cmu.edu/pub_files/2010/9/munoz_eccv_10.pdf
2010 State Key Laboratory of Pulsed Power Laser Technology Taillight detection algorithm based on four thresholds of brightness and color Tail Light Detection , http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJC201021073.htm
2010 National Chin-Yi University of Technology Vision-based vehicle detection in the nighttime Tail Light Detection , https://ieeexplore.ieee.org/abstract/document/5533451/
2009 B-spline modeling of road surfaces with an application to free-space estimation ステレオによる傾斜推定 , https://vision.cs.tum.edu/_media/spezial/bib/wedel_et_al_its09.pdf
2009 Real Time Visual Traffic Lights Recognition Based on Spot Light Detection and Adaptive Traffic Lights Templates TLR , https://www.researchgate.net/profile/Fawzi_Nashashibi/publication/277576745_ArticleFawzi_ITS09_RealTimeVisualTLR/data/556da0a008aec22683061e1d/ArticleFawzi-ITS09-RealTimeVisualTLR.pdf
2009 Traffic Light Detection with Color and Edge Information TLR normalized RGBの提案 , https://tohoku.repo.nii.ac.jp/?action=repository_action_common_download&item_id=26343&item_no=1&attribute_id=18&file_no=1
2008 University of Alcal´a Night Time Vehicle Detection for Driving Assistance LightBeam Controller Tail Light Detection , http://www.robesafe.es/personal/pablo.alcantarilla/papers/Alcantarilla08iv.pdf
2008 Nighttime vehicle detection for intelligent headlight control Head Light Detection,Tail Light Detection Real–Adaboost , 78-97%(head),60-94%(tail) http://cic.uab.es/Public/Publications/2008/LHB2008/12.pdf
2008 Road Boundary Detection in Complex Urban Environment based on Low-Resolution Vision Road Boundary Detection PHT ,
2008   Vehicle Detection at Night Based on Tail-Light Detection Tail Light Detection heuristic検出 , 95.3% http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.4004&rep=rep1&type=pdf
2007 Road-marking analysis for autonomous vehicle guidance Lane Detection ルールベース , https://www.researchgate.net/profile/Ruediger_Dillmann/publication/221508440_Road-marking_Analysis_for_Autonomous_Vehicle_Guidance/links/0046351c9388f9d211000000/Road-marking-Analysis-for-Autonomous-Vehicle-Guidance.pdf
2006 University of California, San Diego Video-Based Lane Estimation and Tracking for Driver Assistance: Survey, System, and Evaluation Lane Detection , https://cloudfront.escholarship.org/dist/prd/content/qt1bg5f8qd/qt1bg5f8qd.pdf
2005 Shih-Shinh Huang National Kaohsiung First University of Science and Technology Driver Assistance System for Lane Detection and Vehicle Recognition with Night Vision Lane Detection,Tail Light Detection 上記引用、最速、Vanishing Point Detection158ms 23ms, 90.51%(40m) https://www.researchgate.net/profile/Li-Chen_Fu/publication/224623462_Driver_assistance_system_for_lane_detection_and_vehicle_recognition_with_night_vision/links/00b4951702cb342a68000000.pdf
2019 Space-Time Slicing Visualizing Object Detector Performance in Driving Video Sequences Object Detection 未ラベリングデータでの性能解析を簡易にする可視化 時系列で参考
2019 Monocular Plan View Networks for Autonomous Driving Object Detection 単眼から鳥瞰図生成
2019 Uncertainty Estimation in One-Stage Object Detection Object Detection 信頼性定量
2019 Training Object Detectors With Noisy Data Object Detection Per-object co-teaching 自動ラベリングするのが目的 ODでラベルノイズの影響を初めて調査
2019 Monocular Plan View Networks for Autonomous Driving Object Detection BEV,policy生成 入力は640×352にリサイズ Mask RCNN→3D(距離・向き・サイズ)3D推定→再投影→policy
2019 Monocular 3D Object Detection via Geometric Reasoning on Keypoints Object Detection 3D
2019 Robustness of Object Recognition under Extreme Occlusion in Humans and Computational Models Object Detection オクルージョンに対しロバスト性がないことを検証。 Zhangらのvoting modelとSPPの組み合わせの2ステージ。
2019 Object Detection Based on the Improved Single Shot MultiBox Detector Object Detection SSDの弱点(小物体)解析 Conv4_3 and Conv5_3の受容野が適当な大きさ backboneにfeature fusionを加えGノイズを低減  Conv4_3 and Conv5_3に対し(deconv→)conv→normalize→ReLU→add MAP<1%の微々たる改善
2019 RRPN Radar Region Proposal Network for Object Detection in Autonomous Vehicles Object Detection radarでRegion proposal Perspective transformation, anchor generation and distance compensationの3ステップ Fatserのようにsize/aspect異なるanchor boxを用意 距離に応じてanchorのスケールを変化 カメラ行列でradarの3D点群を2画像に射影 Points of Interestの概念を導入 RRPNでROIを出力してFasterに渡す
2019 Precise Synthetic Image and LiDAR (PreSIL) Dataset for Autonomous Vehicle Perception Object Detection LiDARデータセット
2019 Automated Focal Loss for Image based Object Detection Object Detection focal lossのパラメータ調整を自動化
2019 Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds Object Detection Valeo, 3D AVODより精度は低いが、1.5倍程度高速
2019 Efficient Incremental Learning for Mobile Object Detection Object Detection Samsung+Apple 認識対象を追加していける
2019 Accurate Monocular 3D Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving Object Detection depth用NNを並列、seg後region,classと統合し3D BB出力
2019 GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving Object Detection 3D BB orientationを出力する分岐を加える
2019 The H3D Dataset for Full-Surround 3D Multi-Object Detection and Tracking in Crowded Urban Scenes Object Detection Hondaの公開した3D認識用データセット 360 degree LiDAR dataset
2019 NeurAll Towards a Unified Model for Visual Perception in Automated Driving Object Detection detection/segmenattionを単一NNで同時に学習 このようなunified modelは、 Pros:計算効率、学習時間低減 Cons:negative transfer in multi-task learning(人手の部分が誤差に不寛容に;データ設計、アーキテクチャ、ハイパラ、ハードケース) 全タスクに共通のデータセットは少ないので タスク間のバランス等、ⅢD参考
2019 TrackNet: Simultaneous Object Detection and Tracking and Its Application in Traffic Video Analysis Object Detection 学習は、UA-DETRAC[31] dataset 時系列のBBをtubeと呼ぶ このBBの共通部分の特徴量を抽出するTube Pooling 2つのFCで分類とoffsetを独立に推定 7x7x256の特徴量を256個抽出する lossは5個: crossentropy classification loss (class) regression loss (offset) 上記それぞれtube proposal network前後2個 smooth l1 loss (Fast R-CNNと同じ)
2019 RetinaMask Learning to predict masks improves state-of-the-art single-shot detection for free Object Detection Mask Prediction, Self-Adjusting Smooth L1 Loss SOTAのRetinaNetの学習方法改良による精度向上により2stage並みの精度に cleaner training dataで精度・収束性向上 Detectronを使用 RetinaNet https://arxiv.org/pdf/1901.03353.pdf https://github.com/facebookresearch/Detectron
2019 Mono3D++ Monocular 3D Vehicle Detection with Two-Scale 3D Hypotheses and Task Priors Object Detection 単眼からの車両の形状・姿勢推定 ステレオには精度は及ばない
2019 AdaScale: Towards Real-time Video Object Detection Using Adaptive Scaling Object Detection lossが最小になるスケールm_optを出力するよう学習? FPが3割くらい減る効果 高解像度ゆえにFPが多い場合に有効
2019 Scale-Aware Trident Networks for Object Detection Object Detection 小さい/大きい物体の検出率向上のためにdilation rateの異なるfeatureごとに予測 従来の画像ピラミッドは推論時間に課題 従来の特徴ピラミッド(SSD,FPN)は、スケールごとに表現力(意味情報)が異なることが課題 認識におけるreceptive field単独の影響を初めて論じた  dilation rateが大きいと、大サイズの物体の精度が上がる 3ブランチに分け、dilation rate以外のパラメータは共通  各ブランチはFaster R-CNN  weight sharingだけでAP~1.5%向上 推論時はブランチを1つにしてもさほど精度は落ちない?  ブランチ数は1~4で3がベスト  各ブランチのBBに対しsoft-NMS backboneのResNet-101をDeformableにするだけで2%向上 MXNetで実装
2018 Modeling Camera Effects to Improve Visual Learning from Synthetic Data Object Detection chromatic aberration, blur, exposure, noise, and color temperatureでDA
2018 DeepVoting: A Robust and Explainable Deep Network for Semantic Part Detection under Partial Occlusion Object Detection 下記引用。
2018 Tiny-DSOD Lightweight Object Detection for Resource-Restricted Usages Object Detection MobileNet-SSDに対し倍速で精度向上 ただしVGG-SSDよりは精度劣る TITANで105fps(300x300入力)
2018 Deep continuous fusion for multi-sensor 3D object detection Object Detection 3D BB AVODより改善 BEVに変換するContinuous Fusion Layerを介してcameraの複数階層のfmapをLiDARのfmapにfusion
2018 Pelee A Real-Time Object Detection System on Mobile Devices Object Detection SSD+MobileNetに近い、速度は倍。
2018 ShuffleDet Real-Time Vehicle Detection Network in On-board Embedded UAV Imagery Object Detection SSDの前段をShuffleNetに変えることで、高速化と精度向上を両立
2018 Quantization Mimic Towards Very Tiny CNN for Object Detection Object Detection 軽量化シート参照
2018 Joint Monocular 3D Vehicle Detection and Tracking Object Detection Faster R-CNNベースで3D情報でtrackingの探索空間を減らす
2018 SNIPER: Efficient Multi-Scale Training Object Detection Browse state-of-the-artのCOCO,でトップ 画像ピラミッドで全画素扱うのではなく、context regionsのみ  単一解像度の+30%のデータ量で済む 512x512にリサンプリングするため、バッチサイズを20にまで拡大できる  非同期BNが有効 処理画素数をSNIPの1/3に→推論時間もSNIPの1/3  V100で5fps 学習中は物体サイズが既知なので、周辺(context region)のみ処理することで、低解像度画像でも精度を落とさない region proposal networkに基づきnegative instances(chips)を収集 著者MXNet実装 https://github.com/mahyarnajibi/SNIPER/blob/master/main_train.py
2018 Path Aggregation Network for Instance Segmentation Object Detection PANet SNIPERに僅差 Instance Segmentationではトップ Mask R-CNNより大幅に改善 著者Pytorch実 https://github.com/ShuLiu1993/PANet
2018 RPN-BASED ARCHITECTURE FOR OBJECT DETECTION AND POSE ESTIMATION USING RGB-D DATA Object Detection DL姿勢推定の参考、M論
2018 Pedestrian Detection based on Deep Fusion Network using Feature Correlation Object Detection DSSD+Halfway Fusion+correlation layer RGB-IR2系統入力でNN中央でfusion(concat+NIN)  NIN:通常の畳み込み(stride/padding様々、チャンネル増)+1x1conv(チャネル数半減) correlation layerはHadamard prod→sqrt
2018 CornerNet Detecting Objects as Paired Keypoints Object Detection One-stage アンカーベースの課題:大量のアンカーを用意する必要、ハイパーパラメータの多さ RefineDetにメトリックによっては勝ってる 物体の左上を示すヒートマップと右下を示すヒートマップを別のヘッドで出力し、一緒に出力する埋め込みベクトルが同じ物体の時、一致するよう学習 アンカーボックスに比べ高精度かつ実装も簡単で1-stage物体検出の主流になりそう(岡野原氏ツイート) 2-stageのD-RFCN+SNIPには及ばない Heatmaps,Embeddings,offsetを出力 Embedding距離が最小のペアを探索 hourglass(U-NetのskipにRes modile追加?) x2連結 corner pooling(水平方向と垂直方向でpooling) Focal Loss適用 著者Pytorch実装 TITAN Xで240ms/image https://github.com/princeton-vl/CornerNet
2018 Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3 Object Detection 航空写真の車検出において、Faster R-CNNよりYOLOv3の方が精度(sensitivity)速度とも優位  Faster R-CNNはTensorflow Object Detection APIを使用。 YOLOv3は著者公開コード(Darknet)使用。
2018 Focal Loss for Dense Object Detection Object Detection RetinalNet loss参考、hard negativeの代替 cross entropyにクラス不均衡を補正する重みをかける 下記MegDetからの引用 ICCV2017 student best paper 学習時のクラス不均衡を調整するfocal lossを導入  easy example(正解確率が高い⇔頻度が高い)のcroess entropyのweightを減らす  ハイパーパラメータ(α,γ)が増える feature pyramidの各層の出力を、class予測/box予測に分岐し入力  classification subnetの方でfocal lossに使う確率を予測 Online Hard Example Miningより向上  easy exampleも併用すべきということか 画素ごとに領域を抽出 RetinalNetとして引用されている
2018 MegDet: A Large Mini-Batch Object Detector Object Detection ECCV2018でトップになったMegviiの(前年の?)論文 COCOでmmAP52.5 mini-batch sizeを256にまで増やすことで高精度化 GPU128台 技術的には、warmup learning rate policyとGPU間BNが新しい
2018 Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks Object Detection サーベイ 小物体対策、標識認識についてセクションあり Pascal-VOC  画像が小さすぎて過学習を起こしやすい→MS-COCOが通常使われるようになってきた  Xu et al., 2017aがトップ(mAP81.2) MS-COCO Deformable R-FCN,Ensembling Mask R-CNNs,がトップ(mAP~50.3。いずれも2017の論文。)
2018 FSSD: Feature Fusion Single Shot Multibox Detector Object Detection SSDのによる高速化 精度はSSD512とDSSD513の中間 1080Tiで35fps PASCAL VOC 2007 mAP=84.5 feature pyramid 2つ作って各レベルから検出を行う
2018 Single-Shot Refinement Neural Network for Object Detection Object Detection RefineDet Anchor Refinement Module(粗い予測)とObject Detection Module(最終出力)が並列に並び、解像度ごと/間をTransfer Connection Blockで接続  Transfer Connection Block:CRCRCR(ARMとCDMをつなぐ)の真ん中にdeconvをadd  ARMは物体の有無だけ、ODMでクラス分類(Hard mining)まで行う。 アスペクト比1:3および3:1のバウンディングボックスをケチる。特徴マップ数を6->4に削減。 論文で他手法との比較が充実  PASCAL VOC2007/2012でトップ Caffe実装公開、Dockerで簡単に実行可能 https://github.com/daiwc/RefineDet/blob/master https://qiita.com/nabechi6011/items/5c9f4a3acdf6c55e0a56
2018 Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network Object Detection 計算効率優先 SSDの連続する2層の出力を結合して予測に使う特徴マップを増やしている prediction moduleのres layerをconvに置き換え 学習を3段階:SSDのみプレ→追加モジュールのみ学習→全層ファインチューニング
2018 YOLOv3: An Incremental Improvement Object Detection DSSDより高速高精度 24conv+2FC 20convはImageNetで事前学習 7x7sセル単位でBBの5パラとClassの20パラを出力 lossは、BBの中心・サイズ、信頼度(BBの中心があるセル)、不信頼度(BBの中心がないセル)、クラス確率のMSE https://pjreddie.com/yolo/ https://www.slideshare.net/ssuser07aa33/introduction-to-yolo-detection-model
2017 Perceptual Generative Adversarial Networks for Small Object Detection Object Detection 特徴マップをDに食わせるGAN
2017 Deformable Convolutional Networks Object Detection 下記で引用 convで画素位置のオフセットを算出し、その位置(線形補間)の画素値の加重和としてdeformable convを定義 解説記事 受容野は物体のスケールや形に合わせて適応すべきという考え方に基づく モデルを最初から学習するのではなく、学習済みモデルに deformable の offset field を入れて追加で学習させる 精度がよいのはパラメータ数が増えたからじゃなくて幾何的な変形を捕捉できるようになったから 著者実装(MXNet) https://github.com/msracver/Deformable-ConvNets https://qiita.com/keisuke-nakata/items/90f7020f04476b01d07d
2017 An analysis of scale invariance in object detection-snip. Object Detection 上記D-RFCN+SNIP Dual path networkをバックボーンとする 分類と検出のデータセットで物体サイズの違いが大きいため、分類用のバックボーンの転移学習がうまくいかない課題に対処 低解像度用に学習されたCNNの方が分類精度は良くなった 高解像度で事前学習+低解像度upsamplingでfine-tuneの方が精度が向上 Deformable-RFCNをベースにする 以下の理由から、End2Endではない Res-Net101をベースにしたもので物体候補を抜き出す Res-Net50をベースにし、localizationの部分を抜いたもので物体の分類を行う GPUのメモリー節約のため 拡大縮小+ランダム抽出(MST)はうまくいかなかった←極端に大きい/小さい物体が入っていたから? →MSTの改良版としてSNIPを提案(解像度によって使うROIサイズ範囲を決めることで、極端な大きさのをはじく) 学習時のメモリを節約する工夫として、ROIクロップにおいて、ROI中の物体数最多のROIを選択→未選択の物体を最も多く含むROIを選択→反復 解説 https://www.slideshare.net/DeepLearningJP2016/dlan-analysis-of-scale-invariance-in-object-detection-snip
2017 Speed/accuracy trade-offs for modern convolutional object detectors Object Detection Faster RCNN, R-FCN, SSDの精度-速度トレードオフの解析 精度なら(Inception-)ResNet特徴抽出のFaster RCNN 速度ならResNet特徴抽出のSSD
2017 SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving Object Detection conv積層→ConvDetでBB・クラス抽出→filtering 車載向け組み込みプロセッサは消費電力の制約(WS250Wに対しNVIDIA Xavierは20W) モデルサイズが小さいと通信オーバーヘッドが減らせる(モデル更新時のみ?) 精度は100%recallにおけるprecisionを高くすべき  漏れが一切なく、過剰検出(FP)を極力減らす Faster R-CNNと違い、RPNをend-to-endで学習  RPNとの違いは、クラスも同時に出力する点
2017 DSSD : Deconvolutional Single Shot Detector Object Detection SSDの小さい物体(浅い特徴マップしか使っていない)を検出しづらい課題への対策として、深い情報を使う。 SSDの後段にDeconvolutional Moduleを追加  一旦全SSD層を通過させて、その後各スケールを順に抽出しprediction moduleに出力  Deconvolutional Moduleでは、deconv-conv-BNと、対応するスケールのSSD出力にCBRCBをかませた出力の要素積をPrediction Moduleに接続 SSD部前段はVGG16よりResNet101の方がよい  ただし素のSSDで同じ交換をしても無意味 Prediction Moduleの改良  クラス・位置ずれ回帰誤差の2系統に入力する前に、res layer(1x1convx3-add)追加   SSDでも効果がある(mAP+0.7%) 1:1.6のDefault boxを追加
2016 A unified multi-scale deep convolutional neural network for fast object detection Object Detection KITTIのcar/pedistrian detectionでは2016年以前でトップ 0.4s/GPU
2016 SSD: Single Shot MultiBox Detector Object Detection box中に物体が存在する確率を算出し、それに従いboxを調整 様々な解像度の特徴マップを組み合わせることで物体サイズの多様性に対応 従来手法のproposal generationとリサンプリングを排除し、単一のNNに全ての機能を集約 訓練と推定が同一のNN box候補の選択においてはJaccard係数(共通要素数/和集合要素数)とlossを考慮  Jaccard係数>0.5を全て正解とみなす  正解ボックスとの重複が一番大きいものを一つ選択する方法よりこちらの方が精度が高い。 NNの出力は、デフォルトboxの位置・サイズのオフセット、  デフォルトboxとは、中心位置が同じでアスペクトの異なる複数のbox候補群 lossは位置誤差と信頼度の線形結合  GTを基準にして、位置誤差は中心位置の差のHuberと、サイズ比のlogの和  信頼度lossは、Σdefault boxとGTの一致度×log(softmax(各boxに対するNNの信頼度予測)) 特徴マップ(階層)の数だけboxのスケールを用意  各特徴マップに6種のアスペクト比のdefault boxを用意 ハードネガティブマイニング  実際の画像は物体より背景部分の方が多いため、ほとんどのデフォルトボックスがnegativeになる。  対策として、信頼度最大のものだけを使い、正例と負例(背景)が最大でも3:1になるように調整する。 ベースネットワークは、VGG16を以下のように変更。 ・全結合層6,7を畳み込み層に変更 ・プーリング層5の2×2を3×3に、ストライドを2から1に変更 ・a trous algorigthm(wavelet?)によって畳み込みの範囲を疎に広くしている ・Dropout層と全結合層8は削除 異なる層で異なるスケールのボックスを使うことが重要 計算時間の80%はベースネットワークに費やされている 小さい物体の検出には改善の余地がありそう Faster RCNNが1つの特徴マップにさまざまな大きさの候補領域を適用してるのに対し、SSDは特徴マップがマルチスケール。  物体のスケールに依存しにくくなる?
2016 YOLO9000: Better, Faster, Stronger Object Detection YOLOv2
2019 Learning 2D to 3D Lifting for Object Detection in 3D for Autonomous Vehicles Object Detection GANで単眼3D BB 明確にputperform https://arxiv.org/pdf/1904.08494.pdf
2017 Perceptual Generative Adversarial Networks for Small Object Detection Object Detection 小物体用GAN 超解像特徴マップ生成(conv x5とResNetの和)→DとPerception Branch(BBopx,class出力)に分岐
2018 Deep Learning for Generic Object Detection A Survey Object Detection NIN, SqueezeNet, MobileNet, ShuffleNet, EffNet, ShiftNetの比較 テンソル分解はやりつくされて性能が飽和しているが、2値化ベースはこれから
2018 Object Detection with Deep Learning: A Review Object Detection 代表的手法ごとに解説
2019 Design of Real-time Semantic Segmentation Decoder for Automated Driving Semantic Segmentation FCNとの比較しかない 速度はFCNと同等らしい
2019 Detecting the Unexpected via Image Resynthesis Semantic Segmentation 未知物体を不定性で予測
2019 Fast-SCNN: Fast Semantic Segmentation Network Semantic Segmentation Toshiba,ContextNetの提案者 PSPNetに対しパラメータ数1/600、精度10%悪化 PSPNetに倣い別タスク(分類;ImageNet,お尻をGAP+softmaxに置き換え)でpre-trainingしたが、効果なし! DeepLabは画像を縮小しさらにそれぞれ特徴マップも縮小するが、本手法は特徴マップ縮小のみ 2分岐して、upsampling後とghost blockをaddする構造が新しい 1024 × 2048で123.5fps
2019 Single Network Panoptic Segmentation for Street Scene Understanding Semantic Segmentation panoptic 単一ネットワーク NNの別々の部分間で低レベル特徴を共有し、マルチタスクを同時に学習させることで性能向上 semantic/instanceの出力をheuristicに融合 lossは、RPNのobjectnessのsoftmax、同regression、classのsoftmax、BBのregression、maskのsigmoid、semantocのsoftmax、weight decay ResNet-50+PPM(上記論文参照) seg分岐の出力をnormしてRPN分岐にcatする instance segmentation branchは、Mask R-CNNをベース 画素ごとに label and an instance idが出力、コンフリクトを避ける
2019 Deep Layer Aggregation Semantic Segmentation 様々なタスクに使えるネットワーク構造 2018Joint Monocular 3D Vehicle Detection and TrackingでROI抽出の特徴量算出に使用 階層ごとにUpsampling分岐を増やし逐次連結 比較対象が最新でない?
2019 Hybrid Task Cascade for Instance Segmentation Semantic Segmentation instance segmentationのSOTA SenseTime Mask R-CNNにsemantic segmentation branchを追加 Cascade R-CNNとの違いは、各段階でdetection, mask prediction, semantic segmentationを結合する点 タスク間の関係が考慮される点がベター FishNetを採用 浅い層の情報を後半に連結できる instance/detectionともに、ResNeXtより1.5%程度向上 SoftNMS適用 classwise balance samplingは適用せず 何がうまくいって、何が効果がなかったのかの経験談が参考になる 工数見積もり:reproducing/20days,tuning/30days,expolre new ideas/30days コード公開予定 ECCV2018発表スライドが参考になる http://presentations.cocodataset.org/ECCV18/COCO18-Detect-MMDET.pdf https://github.com/open-mmlab/mmdetection
2019 Semantic Nighttime Image Segmentation with Synthetic Stylized Data, Gradual Adaptation and Uncertainty-Aware Evaluation Semantic Segmentation 夜間に拡張 スタイル変換、徐々に夜間に近づけていく学習 uncertainty-aware intersection-over-union (UIoU) metricを提唱 confidence thresholdではじいたグループが加わった版 RefineNetと比較
2019 AuxNet Auxiliary tasks enhanced Semantic Segmentation for Automated Driving Semantic Segmentation マルチタスク(seg+depth) encoderはResNet-50で共通 decoderはタスクごとに分岐するが似た構造(deconv+addを3回) 比較対象がSegNetなので大したことない
2019 UPSNet: A Unified Panoptic Segmentation Network Semantic Segmentation FPN(U-Net)の出力をsemantic/instance headに分け、両者の出力をpanoptic headで統合 deformable convolution/Mask R-CNN 組合せと同程度の精度 semantic classはstuffとthingの2つのみ
2019 Panoptic Feature Pyramid Networks Semantic Segmentation FAIR Instance segmentation branchは、Mask R-CNNをFPNで改良 semantic segmentation branchは、FPNの各階層の出力にconv+USでスケールを合わせてaddするだけの非常に単純なもの 1/4resの出力に1x1conv+bilinear upsampling+soft maxで最終出力 BNをchannel-wise affine transformationで置き換え DeeplabV3+に対しmIoU-0.5,FLOPs1.6x
2018 ThunderNet: A Turbo Unified Network for Real-Time Semantic Segmentation Semantic Segmentation 精度犠牲にしてICNetより高速(10ms)
2018 BiSeNet Bilateral Segmentation Network for Real-time Semantic Segmentation Semantic Segmentation ICNetを精度・速度で超える https://arxiv.org/pdf/1808.00897.pdf https://github.com/parasdahiya/BiSeNet-Road-Segmentation
2018 A Comparative Study of Real-time Semantic Segmentation for Autonomous Driving Semantic Segmentation 下記同著者のCVPR
2018 RTSeg: Real-time Semantic Segmentation Comparative Study Semantic Segmentation 速度に注目したサーベイ Enc:MobileNet, Dec:UNetがベスト精度
2018 ContextNet Exploring Context and Detail for Semantic Segmentation in Real-time Semantic Segmentation ICNetに劣る(mIoU-3.4%、速度-30%) 下記からの引用 2分岐add(浅いNNでdetail、深いNNでcontext抽出)
2018 Training of Convolutional Networks on Multiple Heterogeneous Datasets for Street Scene Semantic Segmentation Semantic Segmentation 下記論文の著者、下記からの引用 Cityscapes, GTSDB and Mapillary Vistasの3つのデータセットを使った学習は初めて。 3階層ラベル 各階層を別のアーキで推論 各バッチ内でクラスの比率が同じになるよう配分 クラス間imbalanceの原因は、道路や建物など大面積を占めるもの。 データセット間で同一クラスに10^3オーダーの画素数の開き imbalance対策は、以下の記述しかない placing classes with the similar order of examples in the same classifier and thus all classes have bigger probability to be represented in the same batch BBしかラベルがないデータセットを使えるように階層lossを提案
2018 ExFuse Enhancing Feature Fusion for Semantic Segmentation Semantic Segmentation DeepLab v3+と同等
2018 High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs Semantic Segmentation LSGANでsemantic labelだけから画像生成 物体境界情報を併用し画質向上 GがE-D2重入れ子のような構造 pix2pixがベース 学習データ生成に使える
2018 Understanding Convolution for Semantic Segmentation Semantic Segmentation decorderにDUC(Dense Upsampling Convolution)、encoderにHDC(Hybrid Dilated Convolution)を適用 DUCはpixel shuffler HDCは連続する3層で異なるdilation rate 同じdilateion rateだと真の受容野もスパースになり、近傍画素間で整合性がなくなる(gridding problem)
2018 S4-Net: Geometry-Consistent Semi-Supervised Semantic Segmentation Semantic Segmentation 少数のRGB-Dフレームからの学習 たった4クラス semi-supervisedのためのgeometric consistency constraints lossが新しい
2018 Panoptic Segmentation Semantic Segmentation FAIR Semantic/Instance Segmentationを融合したタスクの提案 アルゴリズムの提案はない? 定量評価はpanoptic quality (PQ) metricIoUがinstanceごとの和になる点が従来と違う 既存の使えるデータセットは3つだけ(Cityscapes, ADE20k, Mapillary Vistas)
2018 Context Encoding for Semantic Segmentation Semantic Segmentation EncNet Amazon,SenseTime共著 FCNがベース SE的にチャネル重みを出して掛ける。 この途中の出力にFCをかけSE(Semantic Encoding)-lossを算出。 lossが物体の大きさによらない。 global semantic informationの効率的な利用。 SE-lossのGTは正解マップから直接作っている(含まれているクラスを列挙したベクトル?) 同著者のEncoding Layerの手法(2017)をベースにしている Context Encoding:codebookと特徴マップの各画素(1x1xC)の残差を重み調整しReLU+BN→全画素・codebook間平均 Featuremap Attention:上記残差にFC+sigmoidでscaleを算出 adaptive instance normalizationとSE-Netにインスピレーションを得たという記述 特定クラスの強調が目的? PASCAL VOC 2012でDeepLabv3に対し+0.2% ADE20KでPSPNet(ResNet269ベース)に対し-0.29% http://hangzh.com/
2018 Searching for Efficient Multi-Scale Architectures for Dense Image Prediction Semantic Segmentation DeepLabv3+の著者(Google AI) NAS Google vizier(random search)を使う 現在最良の解周辺を探索 random searchでもそこそこいける EncNetに対しmAP+1.7%、演算量はDeepLabv3+の半分 最後にDense Prediction Cell(DPC)というDAGを接続 5分岐を連結 atrous convのrateを探索 最初にdil. rate1x2のconvを入れるのがベストだった→近接情報がより重要 各候補は30K iter.のみ+early stopping 高速化の工夫として、network backboneを小規模にし、backboneの上に接続するDPCのみ学習し、 explore 28K DPC architectures across 370 GPUs over one week. modified Xception network backbone 1GPUでナイーブ探索だと1週間余り→90min.に短縮 以下のproxy(代理) taskに置き換えることで高速化 最初はMobileNet-v2 backbone(コスト~1/20)で探索 最初に2^5-1通りのアーキ探索空間 proxy/real taskのスコアの相関係数は0.46(不十分に思えるのだが...) 目的関数はmIoU
2018 End to End Video Segmentation for Driving Lane Detection For Autonomous Car Semantic Segmentation GCN+BRは2017Large Kernel Mattersのパクリ(なのに言及せず) 前処理として、学習用画像の空とボンネット(上下)をカット、チェッカーボードを用いた歪曲補正 augmentationは回転
2018 ICNet for Real-Time Semantic Segmentation on High-Resolution Images Semantic Segmentation mIoUはPSPに劣るが、速度は5倍 階層処理1/4,8,16でのみ学習 Cascade feature fusion unitが特徴() DeepLabv3(ResNet50)に比べ、mIoU-1.8%でx7.2高速化 https://github.com/hszhao/ICNet https://github.com/aitorzip/Keras-ICNet
2018 Path Aggregation Network for Instance Segmentation Semantic Segmentation PANet, InstanceのSOTA Information propagationに着目したMask-R-CNNの改良 detection→things prediction、segmentation→stuff predictionの2つの分岐をマージ
2018 Mask R-CNN Semantic Segmentation detectionとsegmentationを同時に行う ROI-Alignの解説はこちら https://qiita.com/yu4u/items/5cbe9db166a5d72f9eb8 Region proposal(サブ画素ずれあり)を3x3分割(feature mapのサイズにそろえる) grid上のfeat mapの値をbilinear interpolationで求める TF実装ではresizeで高速化されている 3x3のセルごとにave/maxを取る(RoI Poolingと同じ)
2018 Encoder-decoder with atrous separable convolution for semantic image segmentation Semantic Segmentation DeepLab-v3+ ベンチマークでトップ http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?cls=mean&challengeid=11&compid=6&submid=15347 2018/Feb. poolingの代わりにstrideで異スケール Xeptionのdepthwiseで高速化 一旦低解像度にする必要性:バックボーンのResNet101の出力が低解像度なので、より高解像度にするには途中から変更しなければならない encoderで解像度向上 encoderのlow level特徴を入力 超解像の手法が応用できないか? ResNet-101の場合、出力を1/16解像度にするには最後の3ブロック(9層)、1/8にするには26ブロック(78層)もの変更が必要 クラス分類の最後の層のstrideを除外してatrous convに置き換えて、output stride(OS)を32から16(8)に抑えている。 encoderの後半はマルチスケールコンテキスト情報の統合 separable convで演算量40%減 bilinear upasmplingをdecorderに置き換えて精度0.8%向上 decorderはResNet101のConv2を入力して3x3convx2がベスト 1x1convによるチャネル数削減により精度が向上 途切れ・癒着がなくなり定性的にも良好 XecptionのMaxPoolingを、stride=2のseparableに置き換え Cityscapesの評価ではMapillaryが同精度 和訳 https://qiita.com/mine820/items/14e7c556b358dbc4ee9a https://github.com/tensorflow/models/tree/master/research/deeplab https://github.com/bonlime/keras-deeplab-v3-plus
2018 Evaluating Bayesian Deep Learning Methods for Semantic Segmentation Semantic Segmentation posterior推定にMC dropout/Concrete dropoutを使い、MCの方がよかった IOU以外のベイズ推定の評価方法としてを提案 ベースとしてDeepLab-v3+ using Xception posteriorの近似としてのvariational distributionとのKLを最小化
2018 Improving Semantic Segmentation via Video Propagation and Label Relaxation Semantic Segmentation 動画で学習データ(ラベル)を増やす
2017 Large Kernel Matters -- Improve Semantic Segmentation by Global Convolutional Network Semantic Segmentation localizationのために分類のFCN/GAPを大カーネルconvで代替 受容野を稼ぐために大カーネル 階層処理, Global Convolutional Network(GCN), Boundary Refinement(BR)が特徴 k × k convを1xk+kx1に分解することで、計算量を2/kに抑える 階層処理は、下位GCN出力のdeconv→上位GCN出力へのadd BRは、CRCのRes blockにすぎない 従来はlocalizationに重きを置いていたために分類精度が低い 分類性能は受容野の広さが重要 物体のスケールに依存してしまう ベンチマークではだいぶ下
2017 DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs Semantic Segmentation atrous(dilated) conv.
2016 RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation Semantic Segmentation 階層入力→階層ごと処理後upsample+sumで統合→Chained residual pooling CRPで解像度が整合取れないように見える点が疑問 著者実装 https://github.com/guosheng/refinenet
2016 Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning Semantic Segmentation MC dropout;Uncertaintyを同時に推定
2015 Object Detectors Emerge in Deep Scene CNNs Semantic Segmentation 上記からの引用 有効受容野はずっと小さい
2015 Fully convolutional networks for semantic segmentation Semantic Segmentation intersection-over-union (IOU)評価を提唱
2018 Deep Ordinal Regression Network for Monocular Depth Estimation Depth Estimation KITTIでトップ http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_prediction http://www.robustvision.net/leaderboard.php?benchmark=depth
2018 GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose Depth Estimation SenseTime, CVPR Rigid Structure ReconstructorとNon-rigid Motion Localizerの直列 Rigid...はdepthとposeを独立にCNNで出す Non-rigid...は前者から算出されたOFの整形 forward/backward OFのconsistencyに基づき教師無し学習を行う
2018 Learning Depth from Monocular Videos using Direct Methods Depth Estimation CMU, CVPR depthとposeを独立にCNNで算出しwarped imageを生成、targetと比較 pose CNNにDiffrentiable Direct Visual Odometryを追加する点が新規 失敗例として、歩行者・自転車、輝度飽和、テクスチャレス(幅の広い道路)
2018 Unsupervised Learning of Depth and Ego-Motion from Monocular Video Using 3D Geometric Constraints Depth Estimation Google, CVPR forward/backward depthから点群を作り、ICP loss ペア画像の2つのdepthに基づきそれぞれwarpしクロスで整合性を見る 2つの点群をそれぞれ幾何変換しクロスで整合性を見る
2017 Unsupervised Learning of Depth and Ego-Motion from Video Depth Estimation depth,poseをそれぞれU-Net構造で推定 3フレーム使う 1フレームからdepth推定 3フレーム,depthからpose推定 著者実装 https://github.com/tinghuiz/SfMLearner
2019 Understanding Neural Architecture Search Techniques NAS ENASがランダムサーチを大きく超えない理由の解析
2019 Template-Based Automatic Search of Compact Semantic Segmentation Architectures NAS セマセグ DeepLab v3+の1/100でmIoU-14% RL
2019 SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers NAS 精度,パラメータ数,メモリ量のmulti objective
2019 Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours NAS MnasNetの5000倍高速化、4hrs以下 kernel sizeを分岐する構造で探索するのではなく、単一パスでsizeを探索
2019 Searching for MobileNetV3 NAS v2に対しMadd2/3、同latencyで分類精度+3% SSDLite実装でmAP-0.1%で4/3倍高速化(Table 6) セマセグのR-ASPPに実装したが速度-10%程度 h-swishで精度向上 MnasNetベース SENet組み合わせ 非公式Pytorch実装(small versionのみpretrained 公開) https://github.com/kuan-wang/pytorch-mobilenet-v3
2019 Searching for a robust neural architecture in four gpu hours NAS 最速 Baidu DAGのサンプラー微分可能にした
2019 Random Search and Reproducibility for Neural Architecture Search NAS ランダムサーチベース 単一のNNで学習された重みを層ごとに割り当て使いまわすので、メモリフットプリントは単一アーキ分のみ ProxylessNASが近い DARTSとENASがSOTAとされている ENASよりも精度は改善 速度は、再現確認ができた条件のDARTSと同程度(DARTS論文で再現されたENASの2倍程度) ENAS等の再現性の問題点を指摘(乱数シード、ドキュメント、stage2:本学習&評価の詳細がない) バッチサイズ小さくするとエポック数を増やしたのと同じ効果が期待できそうだが、勾配がノイジーになり、計算時間が増える 著者PyTorch実装 https://github.com/liamcli/randomNAS_release
2019 Progressive Differentiable Architecture Search Bridging the Depth Gap between Search and Evaluation NAS DARTSをprogressive化 SOTA精度で0.3GPU Days 微分ベースの課題として低精度  原因は探索セル数と評価セル数のgap 探索セル数を段階的に増やしていく  Normal cellを1,3,5層 https://github.com/chenxin061/pdarts
2019 Probabilistic Neural Architecture Search NAS ENASと同等の精度・速度 探索空間はDARTSと同じ(normal cell x2/reduction cell交互) DARTSと同じく連続値比率演算混合で微分探索可能にし、empirical Bayes MCで探索
2019 NAS-Bench-101 Towards Reproducible Neural Architecture Search NAS The dataset contains 423,624 unique neural networks exhaustively generated and evaluated from a fixed graph-based search space. Colab https://github.com/google-research/nasbench
2019 Multi-Objective Reinforced Evolution in Mobile Neural Architecture Search NAS Xiaomi MoreMNAS SR向け PSNR,FLOPs,#paramをobjectiveに 複数objectiveの線形結合ではsub-optimal EAとRLの組合せ mutationをRLでやる Cell-based VDSRとほとんど差無し
2019 MFAS: Multimodal Fusion Architecture Search NAS Fusion NNの構造探索
2019 Inductive Transfer for Neural Architecture Optimization NAS ENASと同等の精度・速度
2019 Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search NAS Xiaomi SR向け SOTAのSelNetを上回る micro(cell)/macro level search cellごとの予測間をLSTMでつなぐ EA
2019 Evaluating the Search Phase of Neural Architecture Search NAS ランダムサーチベース 探索方針はランダムでも先行例の方法でも優位差がないという驚くべき結果 探索空間制約とweight sharing(DARTS,ENAS,NAOに共通)が肝 探索中のランキングは最終的な(スクラッチから学習しなおした)性能と相関が低い
2019 EAT-NAS Elastic Architecture Transfer for Accelerating Large-scale Neural Architecture Search NAS NASNetと全く同等 40GPU days small taskでseedとなる構造を決めてからlarge taskでEAでハイパーパラメータ探索
2019 Differentiable Neural Architecture Search via Proximal Iterations NAS 0.06GPU daysでNASNet超え Pruning https://github.com/tanglang96/DDPNAS
2019 Differentiable Architecture Search with Ensemble Gumbel-Softmax NAS DARTS改良で精度向上、4->1.5GPU days
2019 DetNAS: Neural Architecture Search on Object Detection NAS 物体検出への応用 20 × 50 models 20 GPUs on 1 day 探索後再学習 evolution algorithm backboneのみの探索  ShuffleNetとの比較:COCOでmAP1-2%向上  後段はFPN/RetinalNet
2019 Automated Machine Learning NAS NASの教科書
2019 Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search NAS GAでENASより4倍速い 精度はDARTS 2ndなみ 微分ベース ENAS超え 0.11GPU days
2019 Accuracy vs. Efficiency Achieving Both through FPGA-Implementation Aware Neural Architecture Search NAS latencyをrewardに加える点参考 性能は見るべきところ無し "Then the latency of a task is Kh × Kw ×Tr ×Tc"
2018 TAPAS Train-less Accuracy Predictor for Architecture Search NAS IBM 汎化誤差を予測
2018 Taking the Human out of Learning Applications: A Survey on Automated Machine Learning NAS サーベイ CIFAR10だと、NASNet-A>ENAS>PNAS>DenseNet meta-learningを広く網羅
2018 Searching for Efficient Multi-Scale Architectures for Dense Image Prediction NAS semantic segmentationに応用 DeepLab v3+に対しmAP+1.7% 詳細は認識のリスト
2018 Regularized Evolution for Image Classifier Architecture Search NAS Amoeba-Net 精度では僅差でトップ
2018 Progressive Neural Architecture Search NAS RLではなくSMBOを使う モデルアーキテクチャから精度を予測するRNNを用いて, モデルアーキテクチャを全探索する時間を短縮. Keras実装 TF実装 RL,EAはlocal searchの手法 本論文はsequential model-based optimization(SMBO) 構造空間(セルベースの階層構造)をヒューリスティックに、simpleからcomplexに段階的に探索 複数候補(block)の2つの組合せ(cell)を評価し、上位K個に新たにblockを継ぎ足し、を繰り返していく。 5blockのconcatが1cell ShuffleNet/SE-Net<PNAS~NAS https://github.com/titu1994/progressive-neural-architecture-search http://github.com/tensorflow/models/
2018 Neural Architecture Optimization NAS 探索空間を連続化 ENASと同等精度・速度(0.3GPU Days) weight sharing(ENASで提案されたparameter sharing)で600倍高速化 string sequence(NN構造)をencoder(LSTM)でパラメータ空間に写像 パラメータ空間で探索 パラメータ空間からNN構造にdecoder()で逆変換 Performance predictor
2018 MnasNet: Platform-Aware Neural Architecture Search for Mobile NAS 高速化のため、latencyを制約に加える
2018 Efficient Neural Architecture Search via Parameter Sharing NAS 2018Faster Discovery of Neural Architectures by Searching for Paths in a Large Modelと同内容 child network間で転移学習 GPU 1台半日程度 全体の計算グラフの一部であるDAGを探索空間とし、全てのエッジに重みを設定し、一部だけを転移学習に使う。 接続の有無も探索対象としている マクロ探索 レイヤー間の接続をDAGとみなし、有効化するエッジと各レイヤのタイプ(以下)を選択。 3x3 convolution 5x5 convolution 3x3 depthwise-separable convolution 5x5 depthwise-separable convolution 3x3 max pooling 3x3 average pooling DAGによってスキップ接続を含めている。 ミクロ探索 CNNの全体像はNASNet同様のものを想定(Normal/Reduction Cellの繰り返し) Convolution(Normal) CellとReduction Cellをそれぞれ別のDAGとする。 入力となる2ノードとそれらに対する処理(以下)を選択。 identity 3x3 separable convolution 5x5 separable convolution 3x3 max pooling 3x3 average pooling マクロ探索とミクロ探索は排他的で、組合せて実行することはできない CIFAR10ではミクロ探索の方が精度が1%よい CutOutだけで0.5%以上向上 conv-BN-ReLUを単位とした 複数層からskipがきた場合にはconcatとした 最後はGAP(FCのパラメータ数削減)+softmax(過学習抑制)とした https://github.com/melodyguan/enas https://github.com/shibuiwilliam/ENAS-Keras https://github.com/carpedm20/ENAS-pytorch
2018 Dynamic Optimization of Neural Network Structures Using Probabilistic Modeling NAS パラメータとハイパーパラメータを1つのlossにまとめてSGDで最適化 lossの勾配はモンテカルロ法で近似 activationの選択のような離散的な選択を連続値変数の確率分布に置き換えることで、SGDフレームワークに落とし込む
2018 DARTS Differentiable Architecture Search NAS 著者PyTorch実装 候補演算の混合比αを最適化対象とする Ltrainの勾配に基づくパラメータ更新後のLvalを最小化するよう勾配法で探索  ここで用いる擬似学習率の影響が大きい BNには、global moving aveではなくバッチごとの統計を適用 MAC制約あり  MobileNet,ShuffleNet,NASNet,AmoebaNet,PNASいずれも500~600M https://github.com/quark0/darts
2018 AMC: AutoML for Model Compression and Acceleration on Mobile Devices NAS 軽量化を参照
2017 Peephole: Predicting Network Performance Before Training NAS アーキテクチャの性能を予測 LSTM
2017 Neural Architecture Search with Reinforcement Learning NAS NAS CIFAR-10でdepth15/4.2M/5.5%,depth39/37.4M/3.65% DenseNet(depth40/1.0M/5.24%,depth190/25.6M/3.46%)と同等精度 基本2層のLSTM Controllerに複数のchildがぶら下がっている構造のレプリカを並列 childの精度をrewardとする強化学習 現状ではモデルを一から設計する方が特別いいとも悪いともいえない K40 GPUを800台で28日
2017 Learning Transferable Architectures for Scalable Image Recognition NAS Google,Zoph NASNet CNNに限定 CNNセル(繰り返される構造)の最適化を行う 学習された構造は他タスクに転用可能 Controller RNNとChild Networkの関係はNASのまま サイズ変換によりNormal/Reduction Cellに分類。交互に繰り返す構造。 CIFAR(32x32)用の構造にReduction Cellを足してImageNet(~300x300)用に転用。 各セルの探索内容は、2入力(前の隠れ層)を選択→それらに対する処理を選択→2出力の結合方法を選択 ReLU-conv-BNをセットに Controller RNNを方策勾配法ではなくProximal Policy Optimization(PPO)で学習 PPOは、PGの目的関数を改良したもの。2017年にOpenAIが提唱。 目的関数は、PG:logπA→TRPO:rA→PPO:min(rA, clip(r)A):minは悲観的評価の意味。ただし、r=π/π_old。 DenseNetは上回るが、Shake-Shakeには及ばず SENetの6割のパラメータで全く同精度 DropPath(FractalNetで提唱されている手法)の顕著な効果が見られた。ただし一言書いてあるだけ。 P100を500台で4日
2017 Large-Scale Evolution of Image Classifiers NAS
2017 Hierarchical Representations for Efficient Architecture Search NAS CIFAR-10で3.63% モデル全体を自動設計するのではなく、cellを配置して大まかな構造を与え、cellの中身だけを探索する cellの構造はDenseNet、ただしレイヤの中身は未定 tournament selectionがベース
2017 Accelerating Neural Architecture Search using Performance Prediction NAS SVRによる精度予測 TinyImagenetで25%early stoppingで相関係数0.925
2019 GAN-Knowledge Distillation for one-stage Object Detection Distillation GAN応用
2018 Training Shallow and Thin Networks for Acceleration via Knowledge Distillation with Conditional Adversarial Networks Distillation 教師・生徒NNの協調 HintonらがKL-divで生徒に教師の模倣をさせたのに対し、Discを通じての模倣をさせる 3層MLPをDとする 0.3のdropoutをDと生徒に入れる 効果が小さすぎる(ImageNet32でstudent単体で48.2%→47.39%、ちなみにHinton2015だと49.37%)
2018 KDGAN: Knowledge Distillation with Generative Adversarial Networks Distillation GAN応用 MNIST,CIFARでKDでは最高 https://github.com/xiaojiew1/KDGAN/
2018 KDGAN Knowledge Distillation with Generative Adversarial Networks Distillation GANなら平衡点にたどり着くため応用 student/teacherの出力をDに入力 MNIST,CIFAR-10でDeep model compressionの実験 従来のベストCODISを Naive GANの課題として、データ数とエポック数がたくさん必要、Gの更新で発散・消失がおきやすい distillation loss追加 https://github.com/xiaojiew1/KDGAN/.
2018 Block-wise Intermediate Representation Training for Model Compression Distillation 18Res block単位で教師とのlossを取り、半分の層数のstudentを学習 中間特徴量による蒸留の先行例は、Hint training (i.e., FitNets これをそのまま深いNNに適用しても不安定なので、ブロック単位に変更 student側中間ブロックの入力は教師NNの中間出力 KDより0.3%の向上
2017 N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning Distillation RL応用。 Volvoの人が入ってる。 CIFAR-10/VGG-19で精度-1.1%で35x圧縮
2017 Learning Efficient Object Detection Models with Knowledge Distillation Distillation Faster-RCNNに適用し、 one-hotでない確率分布(クラス間の関連性)を、教師NNが学習した隠れた情報と解釈 分類のlossは、GTのone-hot(hard target)とのcross entropyおよび教師NNの出力(soft target)とのcross entropyの線形和 logitの確率分布への変換は温度つきsoftmax 2015Hinton+で提案、T大きいほどsoft(正解でないクラスの値が増加)な分布 cross entropyは、背景クラスのみ重み1.5に増やす。 teacherの精度とstudentの高速性(高々1.5x)を両立 解説記事 http://ai.deepx.co.jp/2018/09/25/%E8%92%B8%E7%95%99-%E7%AC%AC2%E5%9B%9E/ 課題1:クラス間インバランス soft target loss(xentropy)において、バックグラウンドクラスのみ1.5倍の重み 課題2:回帰タスクへの蒸留の応用 ナイーブな対応(lossを連続値用に替える)では、教師NNの誤差に制限がないために、それに引っ張られるリスクがある。 そこで、smooth L1 Loss(student vs. GT)に加え、teacherの誤差-マージンよりもstudentの誤差が大きい場合にのみL2 lossを加える。 課題3:知識の継承をより効果的にする 中間層のマッチングを取る。 チャネル数の違いは、studentの出力に1x1 convを加えること(adaptation layer)で解決。 課題4:高速化 studentへの入力を低解像度にする。 高解像度版に近い精度が得られている。
2017 Data Distillation: Towards Omni-Supervised Learning Distillation 入力に様々な幾何変換を加えて学習済みモデルを適用した出力を教師とする Faster-RCNNに適用し、 種々の幾何変換に対し出力されたboxの和集合を使う 全カテゴリに共通の閾値を使うとバイアスが発生するため、ラベル有無データでannotated instancesの数の平均が一致するよう閾値を選択
2019 URNet : User-Resizable Residual Networks with Conditional Gating Module Model Compression Samsung 可変圧縮率 組み込みでニーズがあるらしい Scale parameter SでResNet moduleの1分岐にGatingをかける Sによる精度悪化は小さい CGM(conditional gating module)追加で精度向上?
2019 sharpDARTS Faster and More Accurate Differentiable Architecture Search Model Compression DARTSより高精度・軽量・高速探索 0.8 GPU days Sharp Separable Convolutionの導入 PyTorch実装コード記載 Cosine Power Annealing LR Cosine Annealingでは初期にLRがほとんど減らないため改善にimbaranceが生じる問題を改善
2019 ResNet Can Be Pruned 60× Introducing Network Purification and Unused Path Removal (P-RM) after Weight Pruning Model Compression VGGで0.34%精度落ちでx44圧縮 ResNet-18では0.31%精度落ちでx55圧縮 ADMMが最適解でないことを初めて示し、続くPurification and Unused Path Removalにより圧縮率を2~10倍向上
2019 Really should we pruning after model be totally trained? Pruning based on a small amount of training Model Compression 学習時に圧縮 8x-9x compression for VGG-19 テスト・学習とも10x高速化 few epoch pretraining->pruning+trainの反復
2019 PruneTrain Gradual Structured Pruning from Scratch for Faster Neural Network Training Model Compression スパース化しながらスクラッチから学習 FLOPs減らすと急激に悪化 30-50%減らせる 学習時間は20-30%低減 pruningはUnstructured/Structuredに大別 Unstructuredは不規則なデータアクセスパタンのため高速化には不利 Group lasso regularizorをlossに追加
2019 Model Compression by Entropy Penalized Reparameterization Model Compression Google VGGで1/590サイズ(Top1 3.4%落ち) endto-end で重みの確率分布を考慮し性能と圧縮率を最大化
2019 Learning Topological Representation for Networks via Hierarchical Sampling Model Compression Hierarchical SamplingによってNNを小規模のNNの連結に再帰的に分解していく 階層構造に分解し、Node embeddingsとして表現 NASに応用できるとインパクトが大きいかもしれない
2019 How Compact?: Assessing Compactness of Representations through Layer-Wise Pruning Model Compression Samsung 精度を向上させ64%パラメータ数減
2019 FSNet: Compression of Deep Convolutional Neural Networks by Filter Summary Model Compression SSDを1/4,7%落ちに kernelを生成するFilter Summaryを学習
2019 Efficient Hybrid Network Architectures for Extremely Quantized Neural Networks Enabling Intelligence at the Edge Model Compression ハイブリッドでVGG19メモリ圧縮21.8x ただし精度は67.2→62.1 NNの頭とお尻とres skipのconvのみFP、あとはbinary
2019 Effective Network Compression Using Simulation-Guided Iterative Pruning Model Compression Deep Compressionとの違いは、 percentile threshold reducedではなくoriginal NNに重み更新をして重要度を算出 Deep Compressionに対する精度向上は微々たるもの Deep Compressionは1/100辺りで精度がピークになる(圧縮によって精度向上!)
2019 DSConv: Efficient Convolution Operator Model Compression メモリ1/14、速度10x
2019 Deep Neural Network Approximation for Custom Hardware: Where We’ve Been, Where We’re Going Model Compression サーベイ、ハード実装との関係 https://arxiv.org/pdf/1901.06955.pdf
2019 Creating Lightweight Object Detectors with Model Compression for Deployment on Edge Devices Model Compression SSDのbackboneのResNet-50のchannel pruning model size=16.3MB, FLOPS=2.31G, and mAP=71.2, MobileNet BBより良好 channel pruning→knowledge transfer→channel deletion→knowledge distillation
2019 CGaP: Continuous Growth and Pruning for Efficient Deep Learning Model Compression VGG-19 on CIFAR-100で+0.37%,78.9%pruned,acc 1.4× reinforcing important learning unitsでユニット増やしてからpruning
2019 Automated Pruning for Deep Neural Network Compression Model Compression Deep Compressionより3割程度の圧縮率向上 微分可能にし、学習中にpruningを実行 FCの圧縮が主要(最大~30x)、convはよくて3割程度減 ReLUとsigmoidを組み合わせたpruning functionを導入 3値化のステップを滑らかにした これをweight decayに組み込む?
2019 Adversarially Trained Model Compression When Robustness Meets Efficiency Model Compression adversarial attackに対するロバスト性を両立するモデル圧縮 MobileNetV2と同等のパラメータ数で、adv有無ともに精度1%以上向上 上記からの引用 intrinsic relationship between CNN weight sparsity and adversarial robustnessを調べた ある程度までは、スパースにしたほうがロバスト性が向上 5%以下のスパース性は脆弱
2018 Weightless: Lossy weight encoding for deep neural network compression Model Compression スパースで誤差を許容するほど、Deep Compressionより圧縮率が高くなる Bloom filterを一般化したBloomier filterを適用
2018 Universal Deep Neural Network Compression Model Compression Samsung ランダムディザ付加→要素ごと等間隔量子化→fine-tune→lossless coding ディザ付加の効果は、高圧縮率で精度が下がる領域で降下を遅らせること Deep Compressionと大差なし
2018 Targeted Dropout Model Compression Hintonのチーム Dropoutは同一層内のユニット間の相互情報量を最大化し、学習後のスパース化にロバストにする効果がある アプリオリに重要でないと考えられる層にdropoutを入れて学習してからスパース化する方法をtargeted dropoutと呼ぶ 著者コード github.com/for-ai/TD 精度を落とさないpruningは60%まで可能(ResNet-32 on CIFAR-10) dropoutを入れて学習することでpruning rateを上げられるという重要な知見 weightのdropout候補をパーセンタイル(targeting proportion;γ)で決め、それらに対してあるdrop probability;αでdrpout実行 γ=0.75,α=0.66がベスト
2018 Studying the Plasticity in Deep Convolutional Neural Networks using Random Pruning Model Compression filter pruningの効果は、filterを選ぶ基準によるのではなく、DNNの可塑性によるものと主張 random pruningでも他の手法と同等であることを示した(pruning後のfine-tuning前提) 最初から少ないフィルタ数で学習するのとは違うのか? differential pruning(層ごとのフィルタ数に比例した削除率)で0.5%向上;あまり効果なし 4xで15%程度も精度が悪化している pruning手法間比較は充実している random以外ではl1-Norm[27]がベスト いまいちクオリティが低い論文
2018 Slim and Efficient Neural Network Design for Resource-Constrained SAR Target Recognition Model Compression モデル圧縮の先行例の参考にもなる 重みが閾値以下なら切り捨てるnetwork pruningの比を決める
2018 ShuffleNet An Extremely Efficient Convolutional Neural Network for Mobile Devices Model Compression MobileNetよりパラメータ数を減らし精度向上(ほぼ同等だが) オプショナルなSE block追加で精度向上 1x1GroupConv->channel shuffle->3x3Depthwise->1x1GroupConv->Res add cuda-convnetでサポートされているrandom sparse convolutionがchannel shuffleに相当 pointwise group convが新しい。弊害対策としてchannel shuffle。 1*1 pointwise convolutionは頻出であるが, これはチャネル方向への参照範囲が大きくコストが高い. これをgrouped convolutionに変更し, 更に出力チャネルが全ての入力チャネルを参照できるよう 「channel shuffle」(チャネルの入れ替え)を行う層を提案.
2018 Rethinking the value of network pruning Model Compression 従来のpruning後fine-tuneと(pruning後)ランダム初期化+再学習とが大差なし(むしろ向上)という驚くべき結果 モデル(FLOPs)圧縮分エポック数を増やすと精度向上、一方fine-tuneでエポック数増やしても効果なし pruningはNASの一種という解釈 generalization errorの上界を圧縮前後のweightの相互情報量で理論的に与えた empirical riskの増加を超えるだけgeneralization errorを減らすよう圧縮すれば、 population riskが改善する population riskとは? モデル圧縮は過学習を抑制する正則化として働くという解釈 代表的手法の再実装を含めたPyTorch実装公開 Faster-RCNNへの転移学習 prune後の構造で(クラス分類の)プレ学習をする方がベター Yang+(2017)のFaster-RCNNのPytorch実装を利用 https://github.com/jwyang/faster-rcnn.pytorch 解説 https://qiita.com/f0o0o/items/56f66dc109fb78af320f https://github.com/Eric-mingjie/Rethinking-network-pruning
2018 Resource-Scalable CNN Synthesis for IoT Applications Model Compression 対象クラスを減らすことで学習済みモデルを縮小 class-imbalance issueに対しては、学習におけるクラスごとのインスタンス数をそろえて対処 GoogLeNetで速度3.5x
2018 Recovering from Random Pruning: On the Plasticity of Deep Convolutional Neural Networks Model Compression weightのpruningの手法間比較
2018 Quantization Mimic Towards Very Tiny CNN for Object Detection Model Compression 蒸留+量子化 教師NNを量子化した上で、量子化された生徒NNを学習 低次元多様体(生徒NN)を高次元の離散データ(教師NNの量子化されたfmap)にfitするのならより簡単 (注)lossの計算時にだけ量子化するのであって、量子化されたweightを学習するのではない lossはR-FCN, Faster R-CNNと同じ INQを引用;weightを2の冪かに制約 INQと違いuniform quantizationにした(丸める値を等間隔にする) ROI poolingでは大きい値を正確に出力することが重要なため VGG-1-4 with R-FCNで、サイズ1/16、速度3x、ハードケースほど精度向上 VGG-1-32は1/600、10xで、medium,hardが元より向上
2018 Pruning neural networks is it time to nip it in the bud? Model Compression アーキテクチャが重要という主張はRethinking...論文に通じる(ちゃんと引用している) 時間の制約下では、pruningよりも小サイズのNNをscratchから学習する方がよい Fisher-pruning (Theis et al., 2018)を適用 pruningによるlossの増加の解析的近似を導出
2018 Pruning at a Glance: A Structured Class-Blind Pruning Technique for Model Compression Model Compression 全層を一括で考慮すること(Blindness)とweightではなくフィルタ単位でpruningすること(Structured Pruning)との組合せが新しい ResNet-110を精度を落とさずに53%削除 LeNet-5は97.4%削減、Deep Compressionと同等 sorted L1 normのパーセンタイルで閾値処理という点は普通
2018 PocketFlow An Automated Framework for Compressing and Accelerating Deep Neural Networks Model Compression ハイパラ最適化+代表的な手法の圧縮+追加学習をひとまとめにしたTFパッケージを公開 https://github.com/Tencent/PocketFlow
2018 Pelee A Real-Time Object Detection System on Mobile Devices Model Compression DenseNetの軽量化
2018 NISP: Pruning Networks using Neuron Importance Score Propagation Model Compression Rethinking...の引用 最終層の1個前の層において影響の大きいニューロンを特定(Inf-FS [34]適用)して、逆伝搬によってネットワーク内各チャネルの寄与率を推定
2018 Network compression using Correlation Analysis of Layer Responses Model Compression Rethinking...の引用
2018 Minimal Random Code Learning: Getting Bits Back from Compressed Model Parameters Model Compression KL div.の制約により圧縮率を制御 誤差 vs. 圧縮率のトレードオフ(Pareto-frontier)がDeep Compression, Bayesian Compressionより改善 encoding distribution p and a parameterized variational family qφの間のKL div.をペナルティとして課す 著者TF実装 https://github.com/cambridge-mlg/miracle
2018 Heterogeneous Bitwidth Binarization in Convolutional Neural Networks Model Compression 1-bit,2-bit一様よりも、weightによって1/2-bitを切り替えることで精度向上
2018 Heterogeneous Bitwidth Binarization in Convolutional Neural Networks Model Compression 1,2,3-bit混在(平均1.4bit) MobileNetにおいて、full precisionに対し-5% 全部3-bitに近い精度 BinaryConnectでは、hard sigmoid(台形)で得られる確率で2値化 ビット数を増やすと、精度が大きく向上(Hubara et al. (2016) and Zhou et al. (2016)) ●N-bit binarization:Tang et al. (2017) ±(残差)平均値で2値化後の残差をさらに2値化、というプロセスを繰り返す 演算量の低減は64/m/n(m,nは入力,重みのビット数) 高速化には入力の2値化も必要 FPGA,ASIC実装の評価? 量子化による汎化誤差低減を相互情報量で説明
2018 FLOPs as a Direct Optimization Objective for Learning Sparse Neural Networks Model Compression lossはweightにベルヌーイ乱数でマスクをかけて、対数尤度とFLOPsのlossの和を取る  第1項はreparameterization trickで最適化、第2項はREINFORCEを適用 conv層のFLOPs loss算出は、(KwKhCin + 1)(Iw − Kw + Pw + 1)(Ih − Kh + Ph + 1)||z||0 https://github.com/AMLab-Amsterdam/L0_regularization のlossにFLOPsを加えたらしい。 上記コードの手法に対し、同精度でFLOPs3/8
2018 Fast On-the-fly Retraining-free Sparsification of Convolutional Neural Networks Model Compression On-the-flyでretrainingなしで圧縮 モデルによって、パーセンタイルと上層ほどスパースにするのと優位性が入れ替わる Deep Compressionとの違いは、iteratively pruning and retrainingがないこと
2018 Exploring Weight Symmetry in Deep Neural Networks Model Compression 転置対称性?の制約 channelwise-triangularがベスト。~20%のパラメータ数削減。 VGGで約半分。精度-0.08。
2018 EffNet: An Efficient Structure for Convolutional Neural Networks Model Compression MobileNet, ShuffleNetと比較 depthwise convolution2層をconvで挟む形のブロック データ圧縮は上層に回す方がいい
2018 Differentiable Fine-grained Quantization for Deep Neural Network Compression Model Compression 不均一ビット数 binary並みの圧縮率(1/30)と、8-bitに近い(が劣る)精度 精度は明らかに落ちてるのでいまいち(CIFAR-10,VGG-16で-1.7%) bi-level optimizationとして定式化 モデルサイズとval.誤差の2項 最適化はDARTSに倣う(Laglangeの未定乗数法?)
2018 Demystifying Neural Network Filter Pruning Model Compression L1ベースのpruningを、フィルタの機能の観点で解析 retrainingは、誤って消したフィルタの機能を残ったフィルタに付加する効果があることが判明 出力のフィルタに対する敏感度のテスト画像間平均を寄与率としてpruningを決定する方法により、精度劣化が大幅に低減(詳細な数値が示されていない)
2018 Deep Neural Network Compression by In-Parallel Pruning-Quantization Model Compression CLIP-Q 容量をVGG16で1.4%にまで削減し精度は微増。 Deep Compressionの半分くらいで、精度は向上 ThiNetは精度が低下 MobileNet,ShuffleNetも1/7程度に軽量化 pruningと量子化を同時に。 weightをパーセンタイルでクリップし、内側は全て0→外側を決められたビット数で分割→各分割Gr.ごとに平均値に置き換え ガウス過程前提のベイズ最適化で層ごとに独立にパーセンタイルとビット数を決定 Bayesian optimizationは非凸で微分困難なブラックボックスの目的関数の最小化に使える。 ガウス過程とは、観測点以外の平均値と分散をガウス関数で補間推定するための仮定。 平均値の大きさ(期待値)と分散の大きさ(未探索領域)をバランスよく探索する方針。 理論は2014Bayesian Optimization with Inequality Constraintsに依拠 objectiveのpriorをガウシアンで仮定し(?)たときの平均と共分散から算出されるexpected improvementを最大化する探索を行う BO参考 http://krasserm.github.io/2018/03/21/bayesian-optimization/ 実装の詳細が'We implemented CLIP-Q in Caffe and used the public Bayesian optimization libraries of [61], [62].'としか書かれていないので再現困難。 高速化は別途工夫が必要
2018 Deep Learning is not a Matter of Depth but of Good Training Model Compression LRのcos減衰の周期を整数倍で増やしていく Stochastic Gradient Descent with Warm Restarts (SGDR) LRの範囲は1E-1~-6 ResNet-110を1/10の層数にして同等の精度を得ている
2018 DCFNet Deep Neural Network with Decomposed Convolutional Filters Model Compression フィルタを既知の基底に分解 パラメータ数削減と正則化
2018 Compressing Neural Networks using the Variational Information Bottleneck Model Compression VGG-16で60%程度のメモリフットプリント、モデルサイズはNetwork-Slimmingより数割改善 variational approximationで求めた層内mutual informationの最小化による冗長性低減 著者実装 https://github.com/zhuchen03/VIBNet
2018 ADMM-NN An Algorithm-Hardware Co-Design Framework of DNNs Using Alternating Direction Method of Multipliers Model Compression pruningとquantizationの組合せにより231xのモデル圧縮(AlexNet) AlexNetでpruning率13xで精度劣化無し pruning率が55%を超えないと速度は向上しない?(break-even weight pruning ratio; Figure 4) pruningは不規則なスパース性とインデクスのためにオーバーヘッドが生じる quantizationでは影響が重畳するため誤差が拡大する Deep compressionはquantizationではなくclusteringを使っている 2段階(pruning率決定→pruning→quantizationをbreak-evenに基づき確定するステップをはさみ2回) break-even ratioを超える(効果がある)層だけ選択的にpruning率を上げていく ADMMにより、AlexNetでpruningは72hrs、quantizationは24hrs Deep Compressionの3.6x圧縮 Caffe実装 http://bit.ly/2M0V7DO
2018 Adam Induces Implicit Weight Sparsity in Rectifier Neural Networks Model Compression 東芝。解析方法参考。 ReLU+L2 loss+Adamでgroup sparsityが現れることを証明。 Adamだと70% sparsity(weight vectorのL2 normのヒストを示す)。momentam SGDでは全くスパース性は現れない。 CIFAR-10に対し、4層MLPで60%削減しても精度落ちず。
2018 A Survey on Methods and Theories of Quantized Neural Networks Model Compression 量子化サーベイ
2017 xUnit: Learning a Spatial Activation Function for Efficient Image Restoration Model Compression DnCNNのパラメータを46%削減して同等性能
2017 Towards Accurate Binary Convolutional Neural Network Model Compression
2017 Soft Weight-Sharing for Neural Network Compression Model Compression 上記サーベイの引用(parameter sharingの代表として) minimum description length (MDL) problemを変分法で解いている。 1. Nowlan & Hinton (1992)の手法に従い、プレ学習済み重みの範囲を等分する複数のガウシアン(θでパラメトライズ)で初期化 2. error cost(log(p(X|w)))とcomplexity cost(priorとposteriorの近似間のKL距離)の和をlossとしたwとθの学習 3. 各成分の平均に置き換え(量子化) ResNetで45x圧縮だが2%誤差増大
2017 On Compressing Deep Models by Low Rank and Sparse Decomposition Model Compression 高速性よりもメモリ削減(圧縮率)に主眼 weight sharing , quantization, and Hoffman codingとの組み合わせも可能(示唆のみ) 重み行列を低ランク行列とスパース行列の和に分解 Greedy Bilateral Decompositionを提案 圧縮率0.55まで精度はほぼ落ちない 上記2015Learning both...と比較。圧縮率0.55まではほぼ同等。
2017 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Model Compression depth wise conv(separable filter)
2017 Learning Efficient Convolutional Networks through Network Slimming Model Compression channel-level sparsityを課す 40/60%pruningで精度向上
2017 Incremental Network Quantization Towards Lossless CNNs with Low-Precision Weights Model Compression quantizationのみでAlexNet 53x圧縮(Deep Comp.は35x) 精度が向上する(4,5bitでref.超え。ImageNet/ResNet50でerr-1.59%) 絶対値が大きいweightのみ量子化量子化されてないweightのみ再学習、のループ 量子化するweightの選択をランダムにしてもそれほど悪化しない 5->3 bitで53x→89x圧縮率向上 低ビット化により、乗算をFPGA上でビットシフトに置き換えられ高速化につながる 著者Caffe実装 https://github.com/AojunZhou/Incremental-Network-Quantization
2017 Channel Pruning for Accelerating Very Deep Neural Networks Model Compression 下記AMCは本手法とRLの組合せ。 フィルタ係数にスパース性を課してLASSOを解く。 1層ずつ逐次的に決定。 Caffe実装 VGG16のpretrained model単独でも公開されているので使える。 https://github.com/yihui-he/channel-pruning
2017 Bayesian Compression for Deep Learning Model Compression VGGで最大95x圧縮(精度-0.2%)、51x高速化(バッチサイズ256) dropoutによる変分ベイズ推定を用いてパラメータに分布を導入. 導入した分布によりスパースなパラメータの学習が誘引される. evidence-lower-bound (ELBO)をlossとする 対数事後確率 著者PyTorch実装 https://github.com/KarenUllrich/Tutorial_BayesianCompressionForDL
2017 Analytical Guarantees on Numerical Precision of Deep Neural Networks Model Compression 量子化による誤差の理論上限 8bitから急激に悪化 weight precision(Bw)をactivation precision(Ba)より大きくすると誤差が大きく低下 Bw=Ba,Bw=Ba+3を実験
2017 A Survey of Model Compression and Acceleration for Deep Neural Networks Model Compression
2016 XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks Model Compression パラメータとアクティベーションを二値化した場合にはXNOR+popcountで高速化できる
2016 SqueezeNet AlexNet-level accuracy with 50x fewer parameters and 0.5MB model size Model Compression convのタップ削減、ビット数削減でAlexNetのパラメータ数を最大1/510に削減
2016 EIE: Efficient Inference Engine on Compressed Deep Neural Network Model Compression weight sharingによって疎な積演算に
2016 EIE: Efficient Inference Engine on Compressed Deep Neural Network Model Compression 上記のハード実装偏 DRAMSRAMでエネルギー効率120x GPU上で13x高速化 pruningによるsparsityは4-25% quantizationは4bit compressed sparse column (CSC) format
2016 Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding Model Compression Pruning-quantization-Huffman encodingの3段階 pruningと再学習の反復 k-meansでクラスタリングし平均値に置き換える量子化(weight sharing) 勾配も量子化 圧縮率は、ビット数、接続数、クラスタ数で決定される AlexNetで35x、精度変わらず 上記サーベイで'state-of-art performance among all parameter quantization based methods'
2016 Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications Model Compression Samsung kernelをvariational Bayesian matrix factorizationで決めたランクでTucker分解 圧縮率はnetworkに強く依存 AlexNetでx5.46、VGG16でx1.09
2015 Learning both Weights and Connections for Efficient Neural Networks Model Compression 上記の引用 解説記事https://qiita.com/naomi7325/items/701a74e65cd504ae26a9 Deep compressionのpruning部分は同じらしい AlexNetで1/9、VGG-16で1/13にパラメータ数を圧縮 閾値以下の重みは0に置き換え 入力/出力が0のニューロンは削除 その後、再学習 学習において、L2正則化が有効 上位層のpruningの方が精度劣化が少ない 下位層は広範囲に伝播するから当然か convとFCで一方を固定し一方だけをpruning pruning後初期化してしまわないこと pruningと再学習のセットを反復することで、5xの圧縮率を9xにまで増やせた。 Pytorch実装 https://github.com/jack-willturner/DeepCompression-PyTorch
2015 FitNets Hints for Thin Deep Nets Model Compression
2019 Optimizing CNN-based Object Detection Algorithms on Embedded FPGA Platforms Acceleration FPGA実装参考
2019 MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning Acceleration AMCと同等
2018 Stacked Filters Stationary Flow For Hardware-Oriented Acceleration Of Deep Convolutional Neural Networks Acceleration stacked filters stationary flow:
2018 NetAdapt Platform-Aware Neural Network Adaptation for Mobile Applications Acceleration latency,消費電力をmetricにする AMCに類似 同等のlatencyでMobileNetV2以上の精度
2018 Learning to Prune Filters in Convolutional Neural Networks Acceleration
2018 Hybrid Pruning Thinner Sparse Networks for Fast Inference on Edge Devices Acceleration チャネル→weight pruningの2段階 ResNet50で精度-1.7%、パラメータ数73%減 weightのL1ノルムでソート 精度を満たすかチェックしながら間引きを増やしていく 層ごとにsparsityを適応的に決める 閾値を、weight絶対値のmean+std×scaleとする
2018 GANAX A Unified MIMD-SIMD Acceleration for Generative Adversarial Networks Acceleration 同著者
2018 FlexiGAN An End-to-End Solution for FPGA Acceleration of Generative Adversarial Networks Acceleration transposed convolutionのFPGAによる高速化
2018 Flexible Deep Neural Network Processing Acceleration 2倍程度高速化
2018 Differentiable Training for Hardware Efficient LightNNs Acceleration FPGA実装、精度-0.3%で30x高速化 weightを2のべきに限定 先行例と同様、lossの微分はstraight-through estimator (STE)で計算
2018 B-DCGAN:Evaluation of Binarized DCGAN for FPGA Acceleration 全要素の2値化
2018 AMC: AutoML for Model Compression and Acceleration on Mobile Devices Acceleration アーキテクチャ固定なのでNASではない?精度のみならずlatencyをターゲットにできる。よりシンプルな方法。 従来人手で決められていた特徴マップのスパース性を自動的に抽出 各層のパラメータ(入出力チャネル数,画像サイズ,stride,k,FLOPs,)をagentが決める agentが決めた圧縮率に従い、2015Learning both weights...のchannel pruningを使う Faster R-CNN4倍高速化でmAP+0.1% TensorFlow Lite frameworkで時間評価 Intel® Distribution of OpenVINO™ toolkit fp32→int8で1.5x前後高速化
2018 A Survey on Acceleration of Deep Convolutional Neural Networks Acceleration サーベイ
2017 Solving internal covariate shift in deep learning with linked neurons Acceleration
2017 IDEAL: Image DEnoising AcceLerator Acceleration BM3D,DJDD高速化
2017 FFT-Based Deep Learning Deployment in Embedded Systems Acceleration FFTによる学習・推論の高速化
2017 Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes Acceleration 1024GPU,15min.,74.9%(精度犠牲なのが難あり)
2017 Accurate, Large Minibatch SGD Training ImageNet in 1 Hour Acceleration Facebook,GPU8->256台で29倍高速化、バッチサイズ8kにすることで大規模並列化を可能にした バッチサイズを増やしても精度が劣化しないテクニックとして2つ提案 linear scaling:バッチサイズに比例して学習率を増やす バッチサイズと学習率は交換可能な概念 バッチサイズを増やすとバッチ内平均のために個々のサンプルによる勾配の比率が減るため、学習率を減らすのと等価(という理解で正しい?) warmup:最初5エポックで徐々に学習率を増やす Sharp minima問題(質の悪い局所解)はバッチサイズが大きいだけでなく学習率が低い場合にも起こる 256GPU,1 hr,76.3 %
2017 A New Approach to Compute CNNs for Extremely Large Images Acceleration 画像のみならずモデルも分割して並列処理 画像分割すると(バッチ)正規化が問題。この解決方法が肝。 サブ画像間の重複領域は入力画像の画素値を使ってパディング; dictionary padding BSP (bulk synchronization parallel) model VGGのReLU1-4_1をstyle loss、ReLU4_2をcontent lossに使う
2016 From High-Level Deep Neural Models to FPGAs Acceleration DNN Weaver開発者の論文 FPGAGPUの比較 GTX 650Tiに対し数倍~数百倍の高速化
2014 Speeding up convolutional neural networks with low rank expansions. Acceleration conv filterの近似